Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 1): 130238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367787

RESUMO

Acute lymphoblastic leukemia (ALL), a hematologic cancer that involves the production of abnormal lymphoid precursor cells, primarily affects children aged 2 to 10 years. The bacterial enzyme L-asparaginase produced from Escherichia coli is utilised as first-line therapy, despite the fact that 30 % of patients have a treatment-limiting hypersensitivity reaction. The current study elucidates the biosynthesis of extremely stable, water-dispersible, anisotropic silver nanoparticles (ANI Ag NPs) at room temperature and investigation of its anti-tumor potency in comparison to L-asparaginase. The optical, morphological, compositional, and structural properties of synthesized nanoparticles were evaluated using UV-Vis-NIR spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy, and X-ray Diffractometer. The UV-Vis-NIR spectra revealed the typical Surface Plasmon Resonance (SPR) at 423 nm along with additional NIR absorption at 962 nm and 1153 nm, while TEM images show different shapes and sizes of Ag nanoparticles ranging from 6.81 nm to 46 nm, together confirming their anisotropic nature. Further, the MTT assay demonstrated promising anticancer effects of ANI Ag NPs with an IC50 value of ∼7 µg/mL against HuT-78 cells. These sustainable anisotropic silver nanoparticles exhibited approximately four times better cytotoxic ability (at and above 10 µg/mL concentrations) than L-asparaginase against HuT-78 cells (a human T lymphoma cell line). Apoptosis analysis by Wright-Geimsa, Annexin-V, and DAPI staining indicated the role of apoptosis in ANI Ag NPs-mediated cell death. The measurement of NO, and Bcl2 and cleaved caspase-3 levels by colorimetric method and immunoblotting, respectively suggested their involvement in ANI Ag NPs-elicited apoptosis. The findings indicate that the biogenic approach proposed herein holds tremendous promise for the rapid and straightforward design of novel multifunctional nanoparticles for the treatment of T cell malignancies.


Assuntos
Nanopartículas Metálicas , Neoplasias , Criança , Humanos , Prata/química , Asparaginase/farmacologia , Nanopartículas Metálicas/química , Neoplasias/patologia , Apoptose , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...