Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antib Ther ; 4(3): 185-196, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34541454

RESUMO

BACKGROUND: Rapid deployment of technologies capable of high-throughput and high-resolution screening is imperative for timely response to viral outbreaks. Risk mitigation in the form of leveraging multiple advanced technologies further increases the likelihood of identifying efficacious treatments in aggressive timelines. METHODS: In this study, we describe two parallel, yet distinct, in vivo approaches for accelerated discovery of antibodies targeting the severe acute respiratory syndrome coronavirus-2 spike protein. Working with human transgenic Alloy-GK mice, we detail a single B-cell discovery workflow to directly interrogate antibodies secreted from plasma cells for binding specificity and ACE2 receptor blocking activity. Additionally, we describe a concurrent accelerated hybridoma-based workflow utilizing a DiversimAb™ mouse model for increased diversity. RESULTS: The panel of antibodies isolated from both workflows revealed binding to distinct epitopes with both blocking and non-blocking profiles. Sequence analysis of the resulting lead candidates uncovered additional diversity with the opportunity for straightforward engineering and affinity maturation. CONCLUSIONS: By combining in vivo models with advanced integration of screening and selection platforms, lead antibody candidates can be sequenced and fully characterized within one to three months.

2.
Parkinsonism Relat Disord ; 64: 202-210, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003905

RESUMO

INTRODUCTION: As current clinical diagnostic protocols for Parkinson's disease (PD) may be prone to inaccuracies there is a need to identify and validate molecular biomarkers, such as circulating microRNAs, which will complement current practices and increase diagnostic accuracy. This study identifies, verifies and validates combinatory serum microRNA signatures as diagnostic classifiers of PD across different patient cohorts. METHODS: 370 PD (drug naïve) and control serum samples from the Norwegian ParkWest study were used for identification and verification of differential microRNA levels in PD which were validated in a blind study using 64 NY Parkinsonism in UMeå (NYPUM) study serum samples and tested for specificity in 48 Dementia Study of Western Norway (DemWest) study Alzheimer's disease (AD) serum samples using miRNA-microarrays, and quantitative (q) RT-PCR. Proteomic approaches identified potential molecular targets for these microRNAs. RESULTS: Using Affymetrix GeneChip® miRNA 4.0 arrays and qRT-PCR we comprehensively analyzed serum microRNA levels and found that the microRNA (PARKmiR)-combinations, hsa-miR-335-5p/hsa-miR-3613-3p (95% CI, 0.87-0.94), hsa-miR-335-5p/hsa-miR-6865-3p (95% CI, 0.87-0.93), and miR-335-5p/miR-3613-3p/miR-6865-3p (95% CI, 0.87-0.94) show a high degree of discriminatory accuracy (AUC 0.9-1.0). The PARKmiR signatures were validated in an independent PD cohort (AUC ≤ 0.71) and analysis in AD serum samples showed PARKmiR signature specificity to PD. Proteomic analyses showed that the PARKmiRs regulate key PD-associated proteins, including alpha-synuclein and Leucine Rich Repeat Kinase 2. CONCLUSIONS: Our study has identified and validated unique miRNA serum signatures that represent PD classifiers, which may complement and increase the accuracy of current diagnostic protocols.


Assuntos
MicroRNAs/sangue , Doença de Parkinson/sangue , Doença de Parkinson/diagnóstico , Idoso , Doença de Alzheimer/sangue , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Noruega , Análise de Sequência de RNA , Suécia
3.
Mol Neurobiol ; 56(5): 3676-3689, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30182337

RESUMO

The term proteostasis reflects the fine-tuned balance of cellular protein levels, mediated through a vast network of biochemical pathways. This requires the regulated control of protein folding, post-translational modification, and protein degradation. Due to the complex interactions and intersection of proteostasis pathways, exposure to stress conditions may lead to a disruption of the entire network. Incorrect protein folding and/or modifications during protein synthesis results in inactive or toxic proteins, which may overload degradation mechanisms. Further, a disruption of autophagy and the endoplasmic reticulum degradation pathway may result in additional cellular stress which could ultimately lead to cell death. Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis all share common risk factors such as oxidative stress, aging, environmental stress, and protein dysfunction; all of which alter cellular proteostasis. The differing pathologies observed in neurodegenerative diseases are determined by factors such as location-specific neuronal death, source of protein dysfunction, and the cell's ability to counter proteotoxicity. In this review, we discuss how the disruption in cellular proteostasis contributes to the onset and progression of neurodegenerative diseases.


Assuntos
Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteostase , Animais , Estresse do Retículo Endoplasmático , Humanos , Mitocôndrias/patologia , Agregados Proteicos , Processamento de Proteína Pós-Traducional
4.
Mol Neurobiol ; 54(10): 7639-7655, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27837450

RESUMO

Parkinson's disease and other synucleinopathies are characterized by the presence of intra-neuronal protein aggregates enriched in the presynaptic protein α-synuclein. α-synuclein is considered an intrinsically disordered 14 kDa monomer, and although poorly understood, its transition to higher-order multimeric species may play central roles in healthy neurons and during Parkinson's disease pathogenesis. In this study, we demonstrate that α-synuclein exists as defined, subcellular-specific species that change characteristics in response to oxidative stress in neuroblastoma cells and in response to Parkinson's disease pathogenesis in human cerebellum and frontal cortex. We further show that the phosphorylation patterns of different α-synuclein species are subcellular specific and dependent on the oxidative environment. Using high-performance liquid chromatography and mass spectrometry, we identify a Parkinson's disease enriched, cytosolic ~36-kDa α-synuclein species which can be recapitulated in Parkinson's disease model neuroblastoma cells. The characterization of subcellular-specific α-synuclein features in neurodegeneration will allow for the identification of neurotoxic α-synuclein species, which represent prime targets to reduce α-synuclein pathogenicity.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , Frações Subcelulares/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Núcleo Celular/química , Cromatografia Líquida de Alta Pressão/métodos , Citosol/química , Humanos , Frações Subcelulares/química
5.
Cell Mol Life Sci ; 73(4): 811-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26608596

RESUMO

The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.


Assuntos
MicroRNAs/genética , MicroRNAs/uso terapêutico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Animais , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Descoberta de Drogas , Regulação da Expressão Gênica , Marcadores Genéticos , Terapia Genética , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Transcrição Gênica
6.
PLoS One ; 10(12): e0143969, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633009

RESUMO

MicroRNAs are key regulators associated with numerous diseases. In HEK293 cells, miR-153-3p and miR-205-5p down-regulate alpha-synuclein (SNCA) and Leucine-rich repeat kinase 2 (LRRK2), two key proteins involved in Parkinson's disease (PD). We have used two-dimensional gel electrophoresis (2D-PAGE) coupled to mass spectrometry (MS) to identify a spectrum of miR-153-3p and miR-205-5p targets in neuronal SH-SY5Y cells. We overexpressed and inhibited both microRNAs in SH-SY5Y cells and through comparative proteomics profiling we quantified ~240 protein spots from each analysis. Combined, thirty-three protein spots were identified showing significant (p-value < 0.05) changes in abundance. Modulation of miR-153-3p resulted in seven up-regulated proteins and eight down-regulated proteins. miR-205 modulation resulted in twelve up-regulated proteins and six down-regulated proteins. Several of the proteins are associated with neuronal processes, including peroxiredoxin-2 and -4, cofilin-1, prefoldin 2, alpha-enolase, human nucleoside diphosphate kinase B (Nm23) and 14-3-3 protein epsilon. Many of the differentially expressed proteins are involved in diverse pathways including metabolism, neurotrophin signaling, actin cytoskeletal regulation, HIF-1 signaling and the proteasome indicating that miR-153-3p and miR-205-5p are involved in the regulation of a wide variety of biological processes in neuroblastoma cells.


Assuntos
MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/genética , Proteômica , Ciclo Celular , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Transcrição Gênica/genética
7.
Exp Gerontol ; 68: 33-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25261764

RESUMO

Parkinson's disease is a chronic, progressive neurodegenerative disorder with increased prevalence in the aging population. It is estimated that approximately 1.5 million individuals in the US alone suffer from Parkinson's disease and with the extension of life expectancy this number is expected to rise dramatically within the next twenty-five years. The majority of Parkinson's disease cases are sporadic. But mutations in genes such as α-synuclein, Parkin, PINK1, DJ-1 and LRRK2, have been conclusively associated with both early- and late-onset of the disease. Although the genetics of Parkinson's disease is starting to become unraveled, the interplay between genetic and environmental factors is largely unknown as are the underlying mechanisms that trigger the disease as the brain ages. The risk of Parkinson's disease increases dramatically in individuals over the age of 60 and it is estimated that more than 1% of all seniors have some form of the condition. In this review, we will highlight some of the central proteins associated with Parkinson's disease and how they may be linked to processes and factors associated with age.


Assuntos
Envelhecimento/fisiologia , Doença de Parkinson/etiologia , Autofagia/fisiologia , Morte Celular/fisiologia , Meio Ambiente , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Transtornos de Início Tardio/etiologia , Transtornos de Início Tardio/fisiopatologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mitofagia/fisiologia , Neurônios/fisiologia , Proteínas Oncogênicas/fisiologia , Estresse Oxidativo/fisiologia , Doença de Parkinson/fisiopatologia , Proteína Desglicase DJ-1 , Proteínas Serina-Treonina Quinases/fisiologia , alfa-Sinucleína/fisiologia
8.
J Neurosci Res ; 92(9): 1167-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24798695

RESUMO

Parkinson's disease (PD) is a progressive and irreversible neurodegenerative disorder coupled to selective degeneration of dopamine-producing neurons in the substantia nigra. The majority of PD incidents are sporadic, but monogenic cases account for 5-10% of cases. Mutations in PINK1 cause autosomal recessive forms of early-onset PD, and PINK1 stimulates Omi/HtrA2/PARK13 protease activity when both proteins act as neuroprotective components in the same stress pathway. Studies on PINK1 and PARK13 have concentrated on phosphorylation-dependent PINK1-mediated activation of PARK13 and mitochondrial functions, because both proteins are classically viewed as mitochondrial. Although PARK13-mediated protective mechanisms are at least in part regulated by PINK1, little is known concerning how these two proteins are regulated in different subcellular compartments or, indeed, the influence of PARK13 on PINK1 characteristics. We show that PARK13 localizes to a variety of subcellular locations in neuronal cells and that PINK1, although more restrictive, also localizes to locations other than those previously reported. We demonstrate that PARK13 accumulation leads to a concomitant accumulation of PINK1 and that the increase in PINK1 levels is compartmental specific, indicating a correlative relationship between the two proteins. Moreover, we show that PARK13 and PINK1 protein levels accumulate in response to H2 O2 and L-DOPA treatments in a subcellular fashion and that both proteins show relocation to the cytoskeleton in response to H2 O2 . This H2 O2 -mediated relocation is abolished by PARK13 overexpression. This study shows that PARK13 and PINK1 are subcellular-specific, but dynamic, proteins with a reciprocal molecular relationship providing new insight into the complexity of PD.


Assuntos
Neurônios/citologia , Estresse Oxidativo/fisiologia , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo , Frações Subcelulares/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Dopaminérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Levodopa/farmacologia , Mutação/genética , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Proteínas Quinases/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/efeitos dos fármacos , Fatores de Tempo , Transfecção
9.
J Biol Chem ; 289(21): 14458-69, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24719325

RESUMO

Mutations in HTRA2/Omi/PARK13 have been implicated in Parkinson disease (PD). PARK13 is a neuroprotective serine protease; however, little is known about how PARK13 confers stress protection and which protein targets are directly affected by PARK13. We have reported that Arabidopsis thaliana represents a complementary PD model, and here we demonstrate that AtPARK13, similar to human PARK13 (hPARK13), is a mitochondrial protease. We show that the expression/accumulation of AtPARK13 transcripts are induced by heat stress but not by other stress conditions, including oxidative stress and metals. Our data show that elevated levels of AtPARK13 confer thermotolerance in A. thaliana. Increased temperatures accelerate protein unfolding, and we demonstrate that although AtPARK13 can act on native protein substrates, unfolded proteins represent better AtPARK13 substrates. The results further show that AtPARK13 and hPARK13 can degrade the PD proteins α-synuclein (SNCA) and DJ-1/PARK7 directly, without autophagy involvement, and that misfolded SNCA and DJ-1 represent better substrates than their native counterparts. Comparative proteomic profiling revealed AtPARK13-mediated proteome changes, and we identified four proteins that show altered abundance in response to AtPARK13 overexpression and elevated temperatures. Our study not only suggests that AtPARK13 confers thermotolerance by degrading misfolded protein targets, but it also provides new insight into possible roles of this protease in neurodegeneration.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Temperatura Alta , Serina Proteases/genética , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Western Blotting , Clonagem Molecular , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Plantas Geneticamente Modificadas , Proteína Desglicase DJ-1 , Desdobramento de Proteína , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Serina Proteases/metabolismo , Especificidade por Substrato , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...