Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; 38(11): 1189-1203, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32667845

RESUMO

Effectual management of biomedical waste is obligatory for healthy human beings and for a safe environment. Mismanagement of biomedical waste is a community health problem. Safe and persistent methods for the management of biomedical waste are of vital importance. This article reviews the classification of biomedical waste, sources, colour-coding system of biomedical waste and salient features of biomedical waste rules in 2016, and the future prospective of nanoparticles. The untreated disposal of biomedical waste is associated with a huge amount of risk, so the efficient treatment for biomedical waste is most imperative. The review also highlights the current methods for disposal of biomedical waste, biological treatments given to biomedical waste water in the effluent treatment plant, and impacts due to the current method. Management of biomedical waste is a great challenge in developed and developing countries. To manage the biomedical waste there is a need for cost-effective, ecofriendly and less contaminating approaches for a greener and safe environment. The awareness regarding waste management is of great interest not only for the community but also for associated employees.


Assuntos
Eliminação de Resíduos de Serviços de Saúde , Nanopartículas , Gerenciamento de Resíduos , Humanos , Saúde Pública
2.
Mater Sci Eng C Mater Biol Appl ; 108: 110319, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923962

RESUMO

Zinc oxide nanoparticles have received much attention worldwide as they possess unique properties like varied morphology, large surface area to volume ratio, potent antibacterial activity, and biocompatibility. Biofilm contains homogenous or heterogeneous microorganisms that remain enclosed in a matrix of an extracellular polymeric substance on biotic or abiotic surfaces. Bacterial biofilm formed on medical devices such as central venous catheters, urinary catheters, prosthetic joints, cardiovascular implantable devices, dental implants, contact lenses, intrauterine contraceptive devices and breast implants cause persistent infections. Such biofilm-associated infections in medical implants cause serious problems for public health and affect the function of medical implants. So, there is an urgent need for the use of an antimicrobial agent that will inhibit biofilm, including such antibiotic-resistant bacterial strains as bacteria, to develop multiple drug-resistances resulting in failure of the antibiotic's action. The antimicrobial agent used should be ideal in terms of biocompatibility, antimicrobial activity, stability at different environmental conditions, with less sensitivity to the development of resistance towards micro-organisms, safe for in vivo and in vitro use, and remain non-hazardous to the environment, etc. The first objective of the review discusses the insights into the formation of biofilm on a medical device with the current strategies to inhibit. The second purpose is to review the recent progress in ZnO- based nanostructure including composites for antibacterial and anti-biofilm activities. This will offer a new opportunity for the application of Zinc oxide-based material in the prevention of biofilm on the medical devices.


Assuntos
Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Nanopartículas/química , Próteses e Implantes/microbiologia , Óxido de Zinco/química , Antibacterianos/química , Infecções Bacterianas/prevenção & controle , Humanos
3.
Environ Sci Pollut Res Int ; 26(27): 27897-27904, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31346943

RESUMO

Management of organic biomedical waste is a global quandary, and it is becoming difficult to confront day by day. Conversion of organic biomedical waste into fertilizer is of great concern. In the present research, organic biomedical waste samples (blood swabs, dressing swabs, and used cotton) were collected then after cow dung was collected in sterile container and immediately transported to the laboratory and screened for any gastrointestinal infection by using routine microscopy for intestinal parasitic infection, routine bacterial culture, and fecal occult blood for any intestinal bleeding. Then after, the pure culture of organisms and fungus were prepared, and further samples were subjected to degradation for 288 h by using various organisms and fungus. Then after, the specific quantity of biomedical waste was subjected for incineration. The physicochemical parameters of biomedical waste samples were analyzed. Then treated samples were mixed with soil to confirm a role as potential fertilizer. Then after, tomato plantation was done and phytochemical parameters of tomato plant were analyzed. This study states that organic biomedical waste produces a sanitary and stable fertilizer.


Assuntos
Fertilizantes , Eliminação de Resíduos de Serviços de Saúde/métodos , Animais , Biodegradação Ambiental , Bovinos , Fezes , Feminino , Incineração , Solanum lycopersicum , Solo
4.
Environ Sci Pollut Res Int ; 26(7): 6696-6705, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30632041

RESUMO

Sustainable organic biomedical waste management is a difficult challenge as this has become one of the serious hazardous wastes. Improper disposal of organic biomedical waste can lead to direct and indirect transmission of diseases. In the present research, the organic biomedical waste samples (32 g blood swabs, 12 g dressing swabs, and 6 g used cotton) were treated with Azadirachta indica ("Neem") and Nicotiana tabacum ("Tobacco") extracts at various concentrations and kept for 96-h degradation, followed by evaluation of physicochemical parameters. The physicochemical results of organic biomedical waste like pH of the experimental sets were within the optimum range and there was 63.33% of decrease of TDS, 86.15% and 95.30% reduction of BOD and COD, respectively was observed at the end of 96 h. The residues were mixed with 1000 g soil to confirm their role as a potential fertilizer. The physicochemical parameters of soil sample F6 (neem+tobacco) show an excellent result among all. The phytochemical parameters of a plant were also enhanced as compared to control. The soil samples and the tomato plants were also not polluted by the heavy metals, they are within the limit given by WHO. The present study deals with the conversion of organic biomedical waste into potential fertilizer by using plant extracts which can purely be financially profitable to the farmer.


Assuntos
Conservação dos Recursos Naturais , Gerenciamento de Resíduos/métodos , Resíduos , Azadirachta , Fertilizantes , Metais Pesados , Solo
5.
Biochem Biophys Rep ; 17: 71-80, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30582010

RESUMO

The present investigation deals with facile polyol mediated synthesis and characterization of ZnO nanoparticles and their antimicrobial activities against pathogenic microorganisms. The synthesis process was carried out by refluxing zinc acetate precursor in diethylene glycol(DEG) and triethylene glycol(TEG) in the presence and in the absence of sodium acetate for 2 h and 3 h. All synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD), UV visible spectroscopy (UV), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy(FESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) technique. All nanoparticles showed different degree of antibacterial and antibiofilm activity against Gram-positive Staphylococcus aureus (NCIM 2654)and Gram-negative Proteus vulgaris (NCIM 2613). The antibacterial and antibiofilm activity was inversely proportional to the size of the synthesized ZnO nanoparticles. Among all prepared particles, ZnO nanoparticles with least size (~ 15 nm) prepared by refluxing zinc acetate dihydrate in diethylene glycol for 3 h exhibited remarkable antibacterial and antibiofilm activity which may serve as potential alternatives in biomedical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...