Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 59: 702-709, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652424

RESUMO

Magnetic core/shell nanostructures of Fe3O4 nanoparticles coated with oleic acid and betaine-HCl were studied for their possible use in magnetic fluid hyperthermia (MFH). Their colloidal stability and heat induction ability were studied in different media viz. phosphate buffer solution (PBS), saline solution and glucose solution with different physiological conditions and in human serum. The results showed enhanced colloidal stability in these media owing to their high zeta potential values. Heat induction studies showed that specific absorption rates (SAR) of core/shells were 82-94W/g at different pH of PBS and concentrations of NaCl and glucose. Interestingly, core/shells showed 78.45±3.90W/g SAR in human serum. The cytotoxicity of core/shells done on L929 and HeLa cell lines using 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide and trypan blue dye exclusion assays showed >89% and >80% cell viability for 24 and 48h respectively. Core/shell structures were also found to be very efficient for in vitro MFH on cancer cell line. About 95% cell death was occurred in 90min after hyperthermia treatment. The mechanism of cell death was found to be elevated ROS generation in cells after exposure to core/shells in external magnetic field. This study showed that these core/shells have a great potential to be used in in vivo MFH.


Assuntos
Betaína , Materiais Revestidos Biocompatíveis , Temperatura Alta , Nanopartículas de Magnetita/química , Teste de Materiais , Ácido Oleico , Animais , Betaína/química , Betaína/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Coloides , Células HeLa , Humanos , Camundongos , Ácido Oleico/química , Ácido Oleico/farmacologia
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 1175-80, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25456659

RESUMO

Intracellular synthesis of silver nanoparticles (AgNPs) using Rhodococcus spp. is demonstrated. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier trans-form infrared spectroscopy, and transmission electron microscopy. Transmission electron microscopy study of microorganisms' revealed synthesis of nanoparticle was occurring inside the cell, in the cytoplasm. AgNPs ranged from 5 to 50 nm. Formed nanoparticles were stable in the colloidal solution due to presence of proteins on the surface. AgNPs showed excellent bactericidal and bacteriostatic activity against pathogenic microorganisms.


Assuntos
Actinobacteria/metabolismo , Anti-Infecciosos/farmacologia , Espaço Intracelular/metabolismo , Nanopartículas Metálicas/química , Prata/farmacologia , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Espectrometria por Raios X , Espectrofotometria Ultravioleta
3.
Dalton Trans ; 43(46): 17343-51, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25321385

RESUMO

Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Temperatura Alta , Magnetismo , Nanopartículas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular , Quitosana/síntese química , Células HeLa , Humanos , Células MCF-7 , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Environ Sci Pollut Res Int ; 21(2): 1503-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23925656

RESUMO

A novel approach for the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of AgNO3 using culture supernatant of phenol degraded broth is reported in this work. The synthesis was observed within 10 h, and AgNPs showed characteristic surface plasmon resonance around 410 nm. Spherical nanoparticles of size less than 30 nm were observed in transmission electron microscopy. X-ray diffraction pattern corresponding to 111, 200, 220, and 311 revealed the crystalline nature of the as-formed nanoparticles. It was found that the colloidal solution of AgNP suspensions exhibited excellent stability over a wide range of ionic strength, pH, and temperature. The effect of pH and ionic strength indicated that stabilization is due to electrostatic repulsion arising from the negative charge of the conjugate proteins. The AgNPs showed highly potent antimicrobial activity against Gram-positive, Gram-negative, and fungal microorganisms. The as-prepared AgNPs showed excellent catalytic activity in reduction of 4-nitrophenol to 4-aminophenol by NaBH4. By manufacturing magnetic alginate beads, the reusability of the AgNPs for the catalytic reaction has been demonstrated.


Assuntos
Anti-Infecciosos/toxicidade , Química Verde/métodos , Nanopartículas Metálicas/química , Prata/metabolismo , Alginatos , Aminofenóis/química , Bactérias/efeitos dos fármacos , Catálise , Fungos/efeitos dos fármacos , Ácido Glucurônico , Ácidos Hexurônicos , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Nitrofenóis/química , Prata/química , Prata/toxicidade , Difração de Raios X
5.
Colloids Surf B Biointerfaces ; 111: 264-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23838191

RESUMO

Surface of La(0.7)Sr(0.3)MnO3 (LSMO) magnetic nanoparticles (MNPs) is functionalized with polymer (dextran) and their colloidal stability in various mediums is carried out. The influence of the surface functionalization of LSMO MNPs on their colloidal stability in physiological media is studied and correlated with their hyperthermia properties. Many studies have concerned the colloidal stability of MNPs coated with polymer, but their long-term stability when such complexes are exposed to physiological media is still not well understood. After zeta potential study, it is found that the dextran coating on MNPs improves the colloidal stability in water as well as in physiological media like PBS. The specific absorption rates (SAR) of these MNPs are found to be in 50-85 W/g in different concentrations of glucose and NaCl; and there values are suitable for hyperthermia treatment of cancer cells under AC magnetic field. After incorporation of MNPs up to 0.2-1mg/mL in 2 × 10(5)cells/mL (L929), the apoptosis and necrosis studies are carried out by acridine orange and ethidium bromide (AO and EB) staining and followed by visualization of microstructures under a fluorescence microscope. It is found that there are no morphological changes (i.e. no signs of cell rounding, bubble formation on the membrane and nuclear fragmentation) suggesting biocompatibility of dextran coated LSMO nanoparticles up to these concentrations.


Assuntos
Coloides/química , Meios de Cultura/química , Hipertermia Induzida/métodos , Lantânio/química , Compostos de Manganês/química , Manganês/química , Nanopartículas/química , Óxidos/química , Polímeros/química , Estrôncio/química , Laranja de Acridina , Animais , Dextranos/química , Etídio , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Campos Magnéticos , Camundongos , Microscopia de Fluorescência , Coloração e Rotulagem , Eletricidade Estática
6.
Dalton Trans ; 42(27): 9966-75, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23698554

RESUMO

The green synthesis of supported noble metal nanoparticles is now the most exciting field for various catalytic applications as well as biomedical applications. In this paper we report a novel synthesis method of a polymer consisting of silver nanoparticles (AgNPs) using immobilized microorganisms in alginate beads. Microorganisms present in the polymer reduce aqueous AgNO3 to AgNPs which get trapped in the polymer to form Ag-Alginate (Ag-Alg) biohydrogel. The formed biohydrogel was characterized by UV-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray (EDS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) analysis. TEM analysis showed that less than 15 nm AgNPs formed in the polymer. The Ag-Alg biohydrogel exhibited efficient heterogeneous catalytic activity in the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 in aqueous solution with durable reusability. Also this biohydrogel showed excellent antimicrobial activity against pathogenic bacteria (antibiotic resistant) and fungi. The described synthesis method of Ag-Alg biohydrogel can be considered robust, cost effective and eco-friendly. The formed highly catalytic active biohydrogel can be used as catalyst in industries and drinking water purification.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Actinobacteria/química , Actinobacteria/metabolismo , Alginatos/química , Alginatos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/química , Antifúngicos/química , Antifúngicos/metabolismo , Catálise , Relação Dose-Resposta a Droga , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata/química , Prata/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...