Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(11): 7869-7880, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857704

RESUMO

Density functional theory has been used to compute the gas-phase geometries, binding energies, ZPE-corrected binding energies, BSSE-corrected binding energies, binding enthalpies, and binding free energies of HCOOH(H2O)n and HCOOH(NH3)(H2O)(n-1) clusters with n = 1-8, 10, 12, 14, 16, 18, and 20. Enthalpies and free energies are calculated for a range of atmospherically relevant temperatures (T) and pressures (P) (from T = 298.15 K, P = 1013.25 hPa to T = 216.65 K, P = 226.32 hPa). The optical properties of those clusters have been studied at the CAM-B3LYP/aug-cc-pVDZ level of theory.

2.
Chemosphere ; 272: 129846, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33582505

RESUMO

The gas-phase geometries, binding energies, enthalpies, and free energies of methanol-(water)n and ethanol-(water)n clusters containing n=1-10,20,30,40, and 50 water molecules have been calculated using density functional theory. The binding energies are calculated at 0 K. The enthalpies are calculated at a temperature of 298.15 K and pressure of 1013.25 hPa (1 atm). The free energies are calculated at a wide range of temperature (T) and pressure (P) (from T = 298.15 K, P = 1013.25 hPa to T = 216.65 K, P = 226.32 hPa). The results show that the free energy of the formation of a specific cluster from its free molecules is negative (i.e., favorable) only below some critical temperature and pressure, which depends on the cluster's size. One of the most common volatile organic compounds (VOCs) in the troposphere is methanol, ethanol, and atmospheric aerosols containing methanol and ethanol. The Rayleigh scattering properties of methanol-water and ethanol-water clusters have been investigated. The scattering intensities were computed at static (∞ nm) and different wavelengths (700, 600, 500, and 400 nm) of naturally polarized light. Rayleigh scattering intensities increase about 9%-10% at 400 nm compared to the static limit (∞ nm) for both methanol-water and ethanol-water clusters.


Assuntos
Metanol , Água , Etanol , Teoria Quântica , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...