Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856881

RESUMO

Aneurysms are bulges of an artery, which require clinical management solutions. Due to the inherent advantages, endovascular coil filling is emerging as the treatment of choice for intracranial aneurysms (IAs). However, after successful treatment of coil embolization, there is a serious risk of recurrence. It is well known that optimal packing density will enhance treatment outcomes. The main objective of endovascular coil embolization is to achieve flow stasis by enabling significant reduction in intra-aneurysmal flow and facilitate thrombus formation. The present study numerically investigates the effect of framing coil orientation on intra-aneurysmal hemodynamics. For the purpose of analysis, actual shape of the embolic coil is used, instead of simplified ideal coil shape. Typically used details of the framing coil are resolved for the analysis. However, region above the framing coil is assumed to be filled with a porous medium. Present simulations have shown that orientation of the framing coil loop (FCL) greatly influences the intra-aneurysmal hemodynamics. The FCLs which were placed parallel to the outlets of basilar tip aneurysm (Coil A) were found to reduce intra-aneurysmal flow velocity that facilitates thrombus formation. Involving the coil for the region is modeled using a porous medium model with a packing density of 20 % . The simulations indicate that the framing coil loop (FCL) has a significant influence on the overall outcome.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37968912

RESUMO

An aneurysm is a disease condition, which is due to the pathological weakening of an arterial wall. These aneurysms are often found in various branch points and bifurcations of an artery in the cerebral circulation. Most aneurysms come to medical attention, either due to brain hemorrhages caused by rupture or found unruptured. To consider surgically invasive treatment modalities, clinicians need scientific methods such as, hemodynamic analysis to assess rupture risk. The arterial wall loses its structural integrity when wall shear stress (WSS) and other hemodynamic parameters exceed a certain threshold. In the present study, numerical simulations are carried out for unruptured middle cerebral artery (MCA) aneurysms. Three distinct representative sizes are chosen from a larger patient pool of 26 MCA aneurysms. Logically, these aneurysms represent three growth stages of any patient with similar anatomical structure. Simulations are performed to compare the three growth phases (with different aspect ratios) of an aneurysm and correlate their hemodynamic parameters. Simulations with patient specific boundary conditions reveal that, aneurysms with a higher aspect ratio (AR) correspond to an attendant decrease in both time-averaged wall shear stress (TAWSS) and spatial wall shear stress gradients (WSSG). Smaller MCAs were observed to have higher positive wall shear stress divergence (WSSD), exemplifying the tensile nature of arterial wall stretching. Present study identifies positive wall shear stress divergence (PWSSD) to be a potential biomarker for evaluating the growth of an aneurysm.

3.
Proc Inst Mech Eng H ; 237(9): 1091-1101, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37533293

RESUMO

Neurosurgeons often encounter dilemmas in the clinical management of cerebral aneurysms owing to an uncertainty of their rupture status and rupture risk. This study evaluates the influence of natural frequency of an aneurysm, as a novel morphological parameter to understand and analyze rupture status and risk prediction. In this work, we employ the natural frequency of 20 idealized and 50 patient specific aneurysms. The natural frequency of patient specific aneurysms is then compared against their rupture status. A strong correlation was observed between various morphological indicators and natural frequency for ideal and patient specific geometries. A statistical analysis with both Mann Whitney U test and T-test for rupture status against natural frequency has given a p-value less than 0.01 indicating a strong correlation between them. The correlation of morphological parameters with natural frequency from Pearson correlation coefficient and T-test suggests a holistic reflection of their effects on the natural frequency of an aneurysm. Thus, natural frequency could be a good indicator to discern the rupture potential of an aneurysm. The correlation between rupture status and natural frequency makes it a novel parameter that can differentiate between ruptured and unruptured patient specific aneurysms.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Hemodinâmica
4.
Comput Methods Programs Biomed ; 227: 107237, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36413819

RESUMO

BACKGROUND AND OBJECTIVE: Understanding the factors that influence the rupture of aneurysms is of primary concern to the clinicians, who are grappled with patient management. It is important to know how the relation between morphological features of the cerebral aneurysm, and the mechanical stresses on the containing arterial walls are influenced by the hemodynamic forces. Present study investigates three different shapes, which have been identified correspondingly in patient-specific scenarios as well. The primary objective is to categorize the bifurcation aneurysms into standard shapes such as, spherical, beehive and pear-shaped, based on patient-specific clinical studies and further compare and contrast the model aneurysms with the patient specific configurations, for their hemodynamic factors as well as the attendant stresses on the wall. MethodsComputational fluid dynamic simulations are performed accounting for the fluid-structure interaction (FSI) effects between the flowing fluid and the containing vessel wall. Blood is assumed to be Newtonian, while the arterial walls are assumed to be linearly elastic. A commercial solver is used for performing detailed calculations. Hemodynamic and bio-mechanical rupture predictions are carried out for the three different shapes. Observations derived from the idealised simulations are compared and contrasted against their patient-specific counterparts. ResultsFrom detailed numerical simulations, it was observed that pear-shaped aneurysms exhibit large re-circulation bubble and flow stagnation zone, with higher residence time for the particles, which may lead to atherosclerotic lesions. Beehive shape allows for maximum flow into the aneurysmal sac with concentrated jet impinging on the dome, leading to high values of maximum WSS (MWSS) resulting in great propensity to form a secondary bleb. However, flow field inside a spherical aneurysm is found to be stable with fewer vortices, and nearly uniform distribution of wall stresses are observed though-out the sac, which perhaps signifies hemodynamically and bio-mechanically stable condition. ConclusionCategorizing patient-specific intracranial aneurysms into standard shapes viz, spherical, beehive and pear could generalize the process of prediction of hemodynamic and bio-mechanical rupture indicators. Comparative assessment of the flow field and stresses reported from the simulations on idealised models, with corresponding patient-specific simulations reveal that, these studies could aid in understanding the generalised shape dependence of hemodynamic and bio-mechanical behaviour of aneurysms.


Assuntos
Aterosclerose , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Hemodinâmica , Artérias , Estresse Mecânico
5.
Comput Methods Programs Biomed ; 213: 106508, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800807

RESUMO

BACKGROUND AND OBJECTIVE: Analysis and prediction of rupture risk of abdominal aortic aneurysms (AAA) facilitates planning for surgical interventions and assessment of plausible treatment modalities. Present approach of using maximum diameter criterion, is giving way to hemodynamic and bio-mechanical based predictors in conjunction with Computational fluid dynamic (CFD) simulations. Detailed studies on hemodynamic and bio-mechanical parameters at the stage of maximum growth/rupture is of practical importance to the clinical community. However, understanding the changes in these parameters at different stages of growth, will be useful for clinicians, in planning routine monitoring to reduce the risk of sudden rupture. This is particularly useful in medical resource starved nations. Present study investigates the hemodynamic and bio-mechanical changes occurring during the growth stages of aortic aneurysms using fluid structure interaction (FSI) studies. METHOD: Six idealized fusiform aneurysm models spanning high (shorter) and low (longer) values of the shape index (DHr), have been analysed at three different stages of growth viz, a Dmax of 3.5cm, 4.25cm, 5cm. Pulsatile Newtonian blood flow, passing through an elastic arterial vessel wall with uniform thickness is assumed. Two-way coupled fluid structure interaction have been employed for the numerical simulation of blood flow dynamics and arterial wall mechanics. RESULTS: Wall shear stress (WSS) parameters and vonmises stress indicators, co-relating rupture and thrombus formation, have been extracted and reported, at each growth stage. When the aneurysm progresses in diameter, the areas recording abnormally low TAWSS, as well as areas of high/low OSI were found to increase at different rates for shorter and longer aneurysms. Moreover, drastic increase in the maximum wall stresses (MWS) and wall displacement were observed as the aneurysm approached the critical diameter. CONCLUSION: Hemodynamic predictors were found to be highly dependent on the shape index (DHr), when the aneurysm was small, whereas significant influence of DHr on the wall stresses happens, as the aneurysm approaches the critical diameter. Inconsistent variation of these indicators exhibited by shorter aneurysms (high DHr) at different growth stages, demands routine monitoring (using scans), of such aneurysms, to prevent unexpected rupture.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Intracraniano , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Simulação por Computador , Progressão da Doença , Hemodinâmica , Humanos , Modelos Cardiovasculares , Estresse Mecânico
6.
Comput Methods Biomech Biomed Engin ; 24(13): 1473-1487, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33966566

RESUMO

Differences in the dynamics and transport of blood make certain regions of the arterial network the preferred sites for initiation and formation of arterial diseases like stenosis and aneurysms. Understanding of such arterial diseases is directly linked to critical hemodynamic parameters such as the wall shear stress (WSS). The present work generalises the influence of WSS on the concentration of LDL that was observed in an earlier study. To this end, a wide variety of simplified flow domain, inspired by the near-wall regions of aneurysms and stenosis, are constructed and analyzed. The effects of pulsatile inflow condition, rheology of blood and curvature of the wall on the correlation between WSS and LDL concentration are investigated. It is demonstrated that the time-scale of variation of lumen-surface-concentration (LSC) of LDL is larger than a single cardiac cycle. As a consequence, the time-average values of WSS are sufficient to locate the regions of higher LSC. This idea is strengthened by making use of simplified flow domain that generates moving stagnation point. Further, it was observed that the rheology of the blood and curvature of the wall does not affect the observed correlation between the WSS and LDL concentration.


Assuntos
Lipoproteínas LDL , Modelos Cardiovasculares , Artérias , Velocidade do Fluxo Sanguíneo , Hemodinâmica , Estresse Mecânico
7.
Int J Numer Method Biomed Eng ; 34(9): e3105, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29790664

RESUMO

Understanding the dynamics of red blood cell (RBC) motion under in silico conditions is central to the development of cost-effective diagnostic tools. Specifically, unraveling the relationship between the rheological properties and the nature of shape change in the RBC (healthy or infected) can be extremely useful. In case of malarial infection, RBC progressively loses its deformability and tends to occlude the microvessel. In the present study, detailed mesoscopic simulations are performed to investigate the deformation dynamics of an RBC in flow through a constricted channel. Specifically, the manifestation of viscous forces (through flow rates) on the passage and blockage characteristics of a healthy red blood cell (hRBC) vis-á-vis an infected red blood cell (iRBC) are investigated. A finite-sized dissipative particle dynamics framework is used to model plasma in conjunction with a discrete model for the RBC. Instantaneous wall boundary method was used to model no-slip wall boundary conditions with a good control on the near-wall density fluctuations and compressibility effects. To investigate the microvascular occlusion, the RBC motion through 2 types of constricted channels, viz, (1) a tapered microchannel and (2) a stenosed-type microchannel, were simulated. It was observed that the deformation of an infected cell was much less compared with a healthy cell, with an attendant increase in the passage time. Apart from the qualitative features, deformation indices were obtained. The deformation of hRBC was sudden, while the iRBC deformed slowly as it traversed through the constriction. For higher flow rates, both hRBC and iRBC were found to undergo severe deformation. Even under low flow rates, hRBC could easily traverse past the constricted channel. However, for sufficiently slow flow rates (eg, capillary flows), the microchannel was found to be completely blocked by the iRBC.


Assuntos
Eritrócitos/fisiologia , Malária/patologia , Deformação Eritrocítica , Eritrócitos/parasitologia , Hemodinâmica , Humanos , Malária/parasitologia , Microvasos/fisiologia , Modelos Biológicos
8.
Soft Matter ; 13(7): 1472-1480, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28125113

RESUMO

In this paper, we investigate the dynamics of a tethered flexible filament due to fluid flow inside a microchannel. We use the finite sized dissipative particle dynamics (FDPD) approach to model this problem. The flexible filament is modeled as a bead-spring system with both extensional and flexural rigidity. The influence of flow rate and bending stiffness on the filament dynamics is studied in terms of the different conformational modes obtained. The competing effects of the hydrodynamic force and elastic force in the presence of Brownian thermal effects of comparable order influence the mode shapes of the filament. The dynamics of the filament motions are further analyzed using proper orthogonal decomposition. An important consequence of the dynamics of the filament is that it causes cross-flow in the micro-channel, which could potentially be exploited in micro-mixing and pumping applications. The cross stream fluid transport is observed to be more pronounced for higher bending stiffness.

9.
Soft Matter ; 10(23): 4184-91, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24770612

RESUMO

In this work, we numerically study a new means of manipulating single DNA chains in microchannels. The method is based on the effect of finite slip at hydrophobic walls on the hydrodynamics and, consequently, on the dynamics of the DNA in microchannels. We use dissipative particle dynamics to study DNA transport as a function of chain length and the Reynolds number in two dimensional parallel plate channels. We show how an asymmetric velocity profile in a channel with hydrophobic and hydrophilic walls can be used to manipulate the location of the DNA molecules. Using this effect, we propose a simple arrangement of hydrophobic and hydrophilic strips which can be exploited to separate long and short DNA chains.


Assuntos
DNA/química , Simulação por Computador , DNA/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(1 Pt 2): 016703, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16486310

RESUMO

Phase-field models have emerged as a successful class of models in a wide variety of applications in computational materials science. Multiphase field theories, as a subclass of phase-field theories, have been especially useful for studying nucleation and growth in polycrystalline materials. In theory, an infinite number of phase-field variables are required to represent grain orientations in a rotationally invariant free energy. However, limitations on available computational time and memory have restricted the number of phase-field variables used in the simulations. We present an approach by which the time and memory requirements are drastically reduced relative to standard algorithms. The proposed algorithm allows us the use of an unlimited number of phase-field variables to perform simulations without the associated burden on computational time or memory. We present the algorithm in the context of coalescence free grain growth.

11.
Phys Rev Lett ; 88(5): 054502, 2002 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-11863732

RESUMO

This Letter introduces a control strategy for taming the wake turbulence behind a cylinder. An angular momentum injection scheme is proposed to synchronize the vertical velocity field. We show that the base suction, wake formation length, absolute instability, and the Kármán vortex street are effectively controlled by the angular momentum injection. A control equation is designed to implement the injection. The Navier-Stokes equations, along with the control equation, are solved. The occurrence of a new recirculation free zone is identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...