Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 326: 121795, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230376

RESUMO

AIMS: Phytoestrogens can act as natural estrogens owing to their structural similarity to human estrogens. Biochanin-A (BCA) is a well-studied phytoestrogen with a wide variety of pharmacological activities, whereas not reported in the most frequently encountered endocrinopathy called polycystic ovary syndrome (PCOS) in women. PURPOSE: This study aimed to investigate the therapeutic effect of BCA on dehydroepiandrosterone (DHEA) induced PCOS in mice. MAIN METHODS: Thirty-six female C57BL6/J mice were divided into six groups: sesame oil, DHEA-induced PCOS, DHEA + BCA (10 mg/kg/day), DHEA + BCA (20 mg/kg/day), DHEA + BCA (40 mg/kg/day), and metformin (50 mg/kg/day). KEY FINDINGS: The results showed a decrease in obesity, elevated lipid parameters, restoration of hormonal imbalances (testosterone, progesterone, estradiol, adiponectin, insulin, luteinizing hormone, and follicle-stimulating hormone), estrus irregular cyclicity, and pathological changes in the ovary, fat pad, and liver. SIGNIFICANCE: In conclusion, BCA supplementation inhibited the over secretion of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) and upregulated TGFß superfamily markers such as GDF9, BMP15, TGFßR1, and BMPR2 in the ovarian milieu of PCOS mice. Furthermore, BCA reversed insulin resistance by increasing circulating adiponectin levels through a negative correlation with insulin levels. Our results indicate that BCA attenuated DHEA-induced PCOS ovarian derangements, which could be mediated by the TGFß superfamily signaling pathway via GDF9 and BMP15 and associated receptors as first evidenced in this study.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Camundongos , Adiponectina/metabolismo , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Desidroepiandrosterona/uso terapêutico , Estrogênios/uso terapêutico , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Insulina/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
2.
Life Sci ; 321: 121638, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001808

RESUMO

AIMS: Polycystic ovary syndrome (PCOS) is a hyper-androgenic endocrinopathy prevalent in premenopausal women with no cure available. The current study aimed to investigate the therapeutic effect of recombinant GDF-9 and Cetrorelix on the gestational origin of dehydroepiandrosterone (DHEA) induced PCOS in postnatal pups' delivered to rat dams. MAIN METHODS: The body weight measurement, blood and serum analysis for glucose tolerance, lipid profile, liver enzymes, sex hormones (Testosterone, Estradiol, and Progesterone), estrus cyclicity assessment, histological staining of ovary and liver, molecular markers expressions of pro-inflammatory by qRT-PCR and immuno-histochemistry technique for folliculogenesis genes and histological staining studies of liver and ovary were done. KEY FINDINGS: The combinational treatment was found to normalize the biochemical parameters and reduction in the estrus irregularity by altering the sex hormones as well as the glucose metabolism and insulin resistance via HOMA-IR value. Further, molecular markers expression confirmed the pro-inflammatory (IL-1ß, TNF-α, and IL-6) and folliculogenesis (GDF-9, BMPR2, and TGF-ßR1) genes associated with PCOS were improved by combinational therapy. SIGNIFICANCE: In conclusion, rGDF-9 could be a potential therapeutic agent in combination with Cetrorelix as a better treatment regime for metabolic and reproductive phenotypes in PCOS. However, the effect of rGDF-9 on infertility-associated phenotypes in PCOS needs further evaluation.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Ratos , Feminino , Animais , Síndrome do Ovário Policístico/metabolismo , Fator 9 de Diferenciação de Crescimento/farmacologia , Hormônios Esteroides Gonadais
3.
Inflammopharmacology ; 31(2): 823-844, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36662401

RESUMO

Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality in COVID-19 patients, due to limited therapeutic options. This prompted us to explore natural sources to mitigate this condition. Gymnema Sylvestre (GS) is an ancient medicinal plant known to have various therapeutic effects. This investigation examined the therapeutic effect of hydroalcoholic extract of Gymnema Sylvestre (HAEGS) against lipopolysaccharide (LPS)-induced lung injury and ARDS in in vitro and in vivo models. UHPLC-HRMS/GC-MS was employed for characterizing the HAEGS and identified several active derivatives including gymnemic acid, gymnemasaponins, gymnemoside, gymnemasin, quercetin, and long fatty acids. Gene expression by RT-qPCR and DCFDA analysis by flow cytometry revealed that several inflammatory cytokine/chemokine, cell injury markers, and reactive oxygen species (ROS) levels were highly upregulated in LPS control and were significantly reduced upon HAEGS treatment. Consistent with the in vitro studies, we found that in LPS-induced ARDS model, pre-treatment with HAEGS significantly suppressed the LPS-induced elevation of inflammatory cell infiltrations, cytokine/chemokine marker expression, ROS levels, and lung injury in a dose-dependent manner. Further mechanistic studies demonstrated that HAEGS suppressed oxidative stress by modulating the NRF2 pathway and ameliorated the ARDS through the NF-κB/MAPK signalling pathway. Additional fractionation results revealed that fraction 6 which has the exclusive composition of gymnemic acid derivatives showed better anti-inflammatory effects (inhibition of IL-6 and IL-1ß) at lower concentrations compared to HAEGS. Overall, HAEGS significantly mitigated LPS-induced lung injury and ARDS by targeting the NF-κB/MAPK signalling pathway. Thus, our work unravels the protective role of HAEGS for the first time in managing ARDS.


Assuntos
COVID-19 , Gymnema sylvestre , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Ratos , Animais , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Gymnema sylvestre/metabolismo , Espécies Reativas de Oxigênio , Lesão Pulmonar/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...