Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1870(4): 140768, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35158093

RESUMO

The gene for receptor tyrosine kinase ErbB2 is amplified in breast and ovarian tumours. The linear pathway by which signals are transduced through ErbB2 are well known. However, second generation questions that address spatial aspects of signaling remain. To address this, we have undertaken a mass spectrometry approach to identify phosphoproteins specific for ErbB2 using the inhibitors Lapatinib and CP724714 in ovarian cancer cells. The ErbB2 specific proteins identified in SKOV-3 cells were Myristoylated alanine-rich C-kinase substrate, Protein capicua homolog, Protein peptidyl isomerase G, Protein PRRC2C, Chromobox homolog1 and PRP4 homolog. We have evaluated three phosphoproteins PKM2, Aldose reductase and MARCKS in SKOV-3 cells. We observed that PKM2 was phosphorylated by EGF but was not inhibited by Lapatinib and CP724714. The activity of aldose reductase in reducing NADPH as a substrate was significantly higher in EGF stimulated cells which was inhibited by Lapatinib and CP724714 but not by Geftinib (EGFR inhibitor). MARCKS was phosphorylated on stimulation of SKOV-3 cells with EGF that was inhibited by Lapatinib and CP724714 which was dependent on the kinase activity of ErbB2. These results have identified phosphoproteins that are specific to ErbB2 which have not been previously reported and sets the basis for future experiments.


Assuntos
Aldeído Redutase , Neoplasias Ovarianas , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico , Feminino , Humanos , Lapatinib/farmacologia , Fosfoproteínas/metabolismo , Receptor ErbB-2
2.
Physiol Mol Biol Plants ; 18(4): 287-300, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24082491

RESUMO

Transcription factors (TFs) are an important target in understanding the regulation of plant responses to environmental stress including moisture stress. Members of the same TF family may differ in their response to moisture stress. The expression pattern could vary between shoot and root tissues depending on level of moisture stress. A set of five rarely studied TF families viz., MADS-box (MCM1, AGAMOUS, DEFICIENS and SRF), Auxin Responsive Factor (ARF), Heme Activator Protein 2 (HAP2), Multiprotein Bridging Factor (MBF) and Homeobox (HB) together having 20 members in sorghum, were expression analyzed through quantitative real-time PCR (qRT-PCR) in well watered and moisture stressed shoot and root tissues of sorghum using SYBR Green® to quantify dsDNA synthesis. Fluorescence values were used to calculate PCR efficiency by using LinRegPCR. The PTSb00029.1 and PTSb00033.1 of ARF family and PTSb00174.1 and PTSb00175.1 of HB family recorded 2 to 5, PTSb00221.1 and PTSb00208.1 of MADS family and PTSb00128.1 of HAP2 family recorded 5 to 10 fold up-regulation under moisture stress regimes. The PTSb00128.1, a HAP2 family member, recorded 15 fold up-regulation in mild moisture stressed root tissues. TF genes such as PTSb00218.1, PTSb00220.1, PTSb00031.1, PTSb00032.1, PTSb00034.1 and PTSb00223.1 were found down regulating in both tissues types under moisture stress condition. However, the PTSb00128.1, PTSb00221.1, PTSb00029.1, PTSb00033.1 and PTSb00174.1 TFs were found up-regulating to varied levels in mild and severe moisture stressed root tissues only. Verification of qRT-PCR results was done by in situ hybridization (ISH) of randomly selected two TF genes in shoot and root tissues of sorghum. Taken together, moisture stress triggered up-regulation of more genes in root tissue compared to shoot tissue in sorghum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...