Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Heliyon ; 10(9): e30593, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742063

RESUMO

The native berries of South America present promising marketing opportunities owing to their high antioxidant content, notably rich in anthocyanin and phenolic compounds. However, Ecuador's endemic fruits, primarily found in the wild, lack comprehensive data regarding their phytochemical composition and antioxidant capacity, underscoring the need for research in this area. Accordingly, this study evaluated the total phenolic, anthocyanin, flavonoid, resveratrol, ascorbic acid, citric acid, sugars, and antioxidant content of three native Ecuadorian fruits: mora de monte (Rubus glabratus Kunth), mortiño (Vaccinium floribundum Kunth), and tuna de monte (Opuntia soederstromiana). Determination of resveratrol, ascorbic acid, citric acid, and sugars was determined by HPLC analysis, and UPLC analysis was used to determine tentative metabolites with nutraceutical properties. Antioxidant capacity was assessed using cyclic voltammetry and the DPPH method; differential pulse voltammetry was used to evaluate antioxidant power. Analysis of results through UPLC-QTOF mass spectrometry indicated that R. glabratus Kunth and V. floribundum Kunth are important sources of various compounds with potential health-promoting functions in the body. The DPPH results showed the following antioxidant capacities for the three fruits: R. glabratus Kunth > O. soederstromiana > V. floribundum Kunth; this trend was consistent with the antioxidant capacity results determined using the electrochemical methods.

2.
Prev Nutr Food Sci ; 29(1): 18-30, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38576885

RESUMO

Functional food products remain the focus of current market trends toward healthier nutrition. The consumption of meat-based functional foods has been a topic of interest in food innovation since some of these products generate controversy due to their possible adverse effects on health. However, studies have demonstrated that meat-based functional products are considered an opportunity to improve the nutritional profile of meat products through the addition of biologically valuable components and to meet the specific needs of consumers. In this sense, some strategies and techniques are applied for processing and developing functional meat products, such as modifying carcass composition through feeding, reformulating meat products, and processing conditions. This review focuses on presenting developed and evaluated strategies that allow the production of healthy and functional meat foods, which application has successfully achieved the sensory, nutritional, and technological parameters mainly affected by such application.

4.
iScience ; 27(3): 109192, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38433924

RESUMO

Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO2-modified boron-doped diamond (BDD/TiO2) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO2 nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions. The results indicate that the PEC technique degraded 89.91 ± 0.08% of HDPE MPs in a 10-h reaction and was more efficient at a lower current density (6.89 mA cm-1) with the BDD/TiO2 photoanode compared to electrochemical oxidation on bare BDD.

5.
Chemosphere ; 346: 140586, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939931

RESUMO

Paracetamol, a contaminant of emerging concern, has been detected in different bodies of water, where it can impact ecological and human health. To quantify this paracetamol, electroanalytical methods have gained support. Thus, the present study developed a simple, inexpensive, and environmentally friendly method for paracetamol quantification using a carbon fiber microelectrode based on commercial carbon fiber. To improve the carbon fiber microelectrode's paracetamol sensitivity and selectivity, it was subjected to an activation process via electrochemical oxidation in an acid medium (H2SO4 or HNO3), using 20 consecutive cycles of cyclic voltammetry. The treated (activated) carbon fiber microelectrode was characterized using scanning electron microscopy and electrochemical techniques, including chronoamperometry and electrochemical impedance spectroscopy. The H2SO4-activated carbon fiber microelectrode exhibited enhanced figures of merit, with a linear dynamic range of paracetamol detection from 0.5 to 11 µmol L-1 and a limit of detection of 0.21 µmol L-1 under optimized conditions. The method was optimized by quantifying paracetamol in commercial pharmaceutical tablets, spiked running tap water, and river water (Pita River, Quito, Ecuador, latitude -0.364955°, longitude -78.404538°); the respective recovery values were 102.89, 103.93, and 112.40%. The results demonstrated an acceptable level of accuracy and the promising applicability of this carbon fiber microelectrode as a sensor to detect paracetamol.


Assuntos
Acetaminofen , Carvão Vegetal , Humanos , Microeletrodos , Fibra de Carbono , Água
6.
Front Plant Sci ; 14: 1241612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780522

RESUMO

Climate change challenges modern agriculture to develop alternative and eco-friendly solutions to alleviate abiotic and/or biotic stresses. The use of soil microbiomes from extreme environments opens new avenues to discover novel microorganisms and microbial functions to protect plants. In this study we confirm the ability of a bioinoculant, generated by natural engineering, to promote host development under water stress. Microbiome engineering was mediated through three factors i) Antarctic soil donation, ii) water deficit and iii) multigenerational tomato host selection. We revealed that tomato plants growing in soils supplemented with Antarctic microbiota were tolerant to water deficit stress after 10 generations. A clear increase in tomato seedling tolerance against water deficit stress was observed in all soils over generations of Host Mediated Microbiome Engineering, being Fildes mixture the most representatives, which was evidenced by an increased survival time, plant stress index, biomass accumulation, and decreased leaf proline content. Microbial community analysis using 16s rRNA gene amplicon sequencing data suggested a microbiome restructuring that could be associated with increased tolerance of water deficit. Additionally, the results showed a significant increase in the relative abundance of Candidatus Nitrosocosmicus and Bacillus spp. which could be key taxa associated with the observed tolerance improvement. We proposed that in situ microbiota engineering through the evolution of three factors (long-standing extreme climate adaption and host and stress selection) could represent a promising strategy for novel generation of microbial inoculants.

7.
Chemosphere ; 338: 139483, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454989

RESUMO

Seafood consumption is the primary exposure route for trace metals like mercury. Accordingly, canned tuna meat has been focused on by researchers because of the potential bioaccumulation of high amounts of mercury. This study aimed to test a novel and reliable electroanalytical method employing a working electrode consisting of gold-nanoparticle-modified carbon microfibers to quantify total mercury in canned tuna samples. Determination was achieved via differential pulse anodic stripping voltammetry. The proposed method had a limit of detection of 3.9781 ± 0.0001 µg L-1 and a limit of quantification of 33.6634 ± 0.0001 µg L-1, with a sensitivity of 0.3275 nA µg L-1. The modified electrode was evaluated in samples taken from three canned tuna brands sold in the Sangolquí parish in Rumiñahui, Ecuador. These brands, coded A, B, and C, represent 47.92%, 27.08%, and 11.98% of all canned tuna sold in the Ecuadorian market, respectively. The resulting respective total mercury concentrations were 0.5999 ± 0.0001 mg kg-1; 0.9387 ± 0.0001 mg kg-1; and 0.3442 ± 0.0001 mg kg-1 for A, B, and C. Method accuracy was determined through the recovery percentages of ≥98%, which indicated acceptable accuracy for the final optimized method. Mean mercury concentrations for all samples did not represent a carcinogenic risk for consumers. However, the values obtained for potential no-carcinogenic risk and daily consumption rate suggest that consumers of tuna canned in water, particularly brand C, may be at risk.


Assuntos
Mercúrio , Nanopartículas , Animais , Mercúrio/análise , Atum , Ouro , Equador , Microeletrodos , Fibra de Carbono , Alimentos Marinhos/análise , Carcinógenos , Contaminação de Alimentos/análise
8.
Foods ; 12(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37297508

RESUMO

The presence of heavy metals in craft beers can endanger human health if the total metal content exceeds the exposure limits recommended by sanitary standards; in addition, they can cause damage to the quality of the beer. In this work, the concentration of Cd(II), Cu(II), and Fe(III) was determined in 13 brands of craft beer with the highest consumption in Quito, Ecuador, by differential pulse anodic stripping voltammetry (DPASV), using as boron-doped diamond (BDD) working electrode. The BDD electrode used has favorable morphological and electrochemical properties for the detection of metals such as Cd(II), Cu(II), and Fe(III). A granular morphology with microcrystals with an average size between 300 and 2000 nm could be verified for the BDD electrode using a scanning electron microscope. Double layer capacitance of the BDD electrode was 0.01412 µF cm-2, a relatively low value; Ipox/Ipred ratios were 0.99 for the potassium ferro-ferricyanide system in BDD, demonstrating that the redox process is quasi-reversible. The figures of merit for Cd(II), Cu(II), and Fe(III) were; DL of 6.31, 1.76, and 1.72 µg L-1; QL of 21.04, 5.87, and 5.72 µg L-1, repeatability of 1.06, 2.43, and 1.34%, reproducibility of 1.61, 2.94, and 1.83% and percentage of recovery of 98.18, 91.68, and 91.68%, respectively. It is concluded that the DPASV method on BDD has acceptable precision and accuracy for the quantification of Cd(II), Cu(II), and Fe(III), and it was verified that some beers did not comply with the permissible limits of food standards.

9.
Sci Rep ; 13(1): 7956, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198179

RESUMO

Hand gesture recognition (HGR) based on electromyography signals (EMGs) and inertial measurement unit signals (IMUs) has been investigated for human-machine applications in the last few years. The information obtained from the HGR systems has the potential to be helpful to control machines such as video games, vehicles, and even robots. Therefore, the key idea of the HGR system is to identify the moment in which a hand gesture was performed and it's class. Several human-machine state-of-the-art approaches use supervised machine learning (ML) techniques for the HGR system. However, the use of reinforcement learning (RL) approaches to build HGR systems for human-machine interfaces is still an open problem. This work presents a reinforcement learning (RL) approach to classify EMG-IMU signals obtained using a Myo Armband sensor. For this, we create an agent based on the Deep Q-learning algorithm (DQN) to learn a policy from online experiences to classify EMG-IMU signals. The HGR proposed system accuracy reaches up to [Formula: see text] and [Formula: see text] for classification and recognition respectively, with an average inference time per window observation of 20 ms. and we also demonstrate that our method outperforms other approaches in the literature. Then, we test the HGR system to control two different robotic platforms. The first is a three-degrees-of-freedom (DOF) tandem helicopter test bench, and the second is a virtual six-degree-of-freedom (DOF) UR5 robot. We employ the designed hand gesture recognition (HGR) system and the inertial measurement unit (IMU) integrated into the Myo sensor to command and control the motion of both platforms. The movement of the helicopter test bench and the UR5 robot is controlled under a PID controller scheme. Experimental results show the effectiveness of using the proposed HGR system based on DQN for controlling both platforms with a fast and accurate response.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Gestos , Algoritmos , Extremidade Superior , Eletromiografia/métodos , Mãos
10.
Front Chem ; 11: 900670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37179778

RESUMO

Treating domestic wastewater has become more and more complicated due to the high content of different types of detergents. In this context, advanced electro-oxidation (AEO) has become a powerful tool for complex wastewater remediation. The electrochemical degradation of surfactants present in domestic wastewater was carried out using a DiaClean® cell in a recirculation system equipped with boron-doped diamond (BDD) as the anode and stainless steel as the cathode. The effect of recirculation flow (1.5, 4.0 and 7.0 L min-1) and the applied current density (j = 7, 14, 20, 30, 40, and 50 mA cm-2) was studied. The degradation was followed by the concentration of surfactants, chemical oxygen demand (COD), and turbidity. pH value, conductivity, temperature, sulfates, nitrates, phosphates, and chlorides were also evaluated. Toxicity assays were studied through evaluating Chlorella sp. performance at 0, 3, and 7 h of treatment. Finally, the mineralization was followed by total organic carbon (TOC) under optimal operating conditions. The results showed that applying j = 14 mA cm-2 and a flow rate of 1.5 L min-1 during 7 h of electrolysis were the best conditions for the efficient mineralization of wastewater, achieving the removal of 64.7% of surfactants, 48.7% of COD, 24.9% of turbidity, and 44.9% of mineralization analyzed by the removal of TOC. The toxicity assays showed that Chlorella microalgae were unable to grow in AEO-treated wastewater (cellular density: 0 × 104 cells ml-1 after 3- and 7-h treatments). Finally, the energy consumption was analyzed, and the operating cost of 1.40 USD m-3 was calculated. Therefore, this technology allows for the degradation of complex and stable molecules such as surfactants in real and complex wastewater, if toxicity is not taken into account.

11.
Heliyon ; 9(4): e14937, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025883

RESUMO

Waste processing from fish and seafood manufacturers represents a sustainable option to prevent environmental contamination, and their byproducts offer different benefits. Transforming fish and seafood waste into valuable compounds that present nutritional and functional properties compared to mammal products becomes a new alternative in Food Industry. In this review, collagen, protein hydrolysates, and chitin from fish and seafood byproducts were selected to explain their chemical characteristics, production methodologies, and possible future perspectives. These three byproducts are gaining a significant commercial market, impacting the food, cosmetic, pharmaceutical, agriculture, plastic, and biomedical industries. For this reason, the extraction methodologies, advantages, and disadvantages are discussed in this review.

12.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36829877

RESUMO

This study evaluated the antioxidant properties and chemical composition of the seeds, pulp and peels of Ungurahua (Oenocarpus bataua) and Pasu (Gustavia macarenensis)-fruits, native to the Ecuadorian Amazon. The antioxidant capacity was measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and cyclic voltammetry (antioxidant index 50 (AI50)) assays; differential pulse voltammetry was used to evaluate antioxidant power using the electrochemical index. The total phenolic content, as well as the yellow flavonoid and anthocyanin content, were quantified via spectrophotometry. In addition, the trans-resveratrol and ascorbic acid content were evaluated through high performance liquid chromatography (HPLC). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify secondary metabolites with possible therapeutic properties. Results showed that the Pasu peel and seed extracts had the highest antioxidant capacity, followed by the Ungurahua peel; these results were consistent for both spectroscopic and electrochemical assays. HPLC and UPLC-MS analysis suggest that Oenocarpus bataua and Gustavia macarenensis are important sources of beneficial bioactive compounds.

13.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770554

RESUMO

Air transports several pollutants, including particulate matter (PM), which can produce cardiovascular and respiratory diseases. Thus, it is a challenge to control pollutant emissions before releasing them to the environment. Until now, filtration has been the most efficient processes for removing PM. Therefore, the electrospinning procedure has been applied to obtain membranes with a high filtration efficiency and low pressure drop. This review addressed the synthesis of polymers that are used for fabricating high-performance membranes by electrospinning to remove air pollutants. Then, the most influential parameters to produce electrospun membranes are indicated. The main results show that electrospun membranes are an excellent alternative to having air filters due to the versatility of the process, the capacity for controlling the fiber diameter, porosity, high filtration efficiency and low-pressure drop.

14.
Front Chem ; 11: 1298630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239927

RESUMO

Selecting the ideal anodic potential conditions and corresponding limiting current density to generate reactive oxygen species, especially the hydroxyl radical (•OH), becomes a major challenge when venturing into advanced electrochemical oxidation processes. In this work, a step-by-step guide for the electrochemical generation of •OH on boron-doped diamond (BDD) for beginners is shown, in which the following steps are discussed: i) BDD activation (assuming it is new), ii) the electrochemical response of BDD (in electrolyte and ferri/ferro-cyanide), iii) Tafel plots using sampled current voltammetry to evaluate the overpotential region where •OH is mainly generated, iv) a study of radical entrapment in the overpotential region where •OH generation is predominant according to the Tafel plots, and v) finally, the previously found ideal conditions are applied in the electrochemical degradation of amoxicillin, and the instantaneous current efficiency and relative cost of the process are reported.

15.
Heliyon ; 8(9): e10560, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36325428

RESUMO

Introduction: The release of metallic ions from orthodontic brackets and wires typically depends on their quality (chemical composition) and the medium to which they are exposed, e.g., acidic, alkaline, substances with a high fluoride concentration, etc. This review examines corrosion and wear of orthodontic brackets, wires, and arches exposed to different media, including: beverages (juices), mouthwashes and artificial saliva among others, and the possible health effects resulting from the release of metallic ions under various conditions. Objective: This review aims to determine the exposure conditions that cause the most wear on orthodontic devices, as well as the possible health effects that can be caused by the release of metallic ions under various conditions. Sources: A search was carried out in the Scopus database, for articles related to oral media that can corrode brackets and wires. The initial research resulted in 8,127 documents, after applying inclusion and exclusion criteria, 76 articles remained. Conclusion: Stainless steel, which is commonly used in orthodontic devices, is the material that suffers the most wear. It was also found that acidic pH, alcohols, fluorides, and chlorides worsen orthodontic material corrosion. Further, nickel released from brackets and wires can cause allergic reactions and gingival overgrowth into patients.

16.
Sci Rep ; 12(1): 19969, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402831

RESUMO

Primary hyperoxaluria type 1 (PHT1) treatment is mainly focused on inhibiting the enzyme glycolate oxidase, which plays a pivotal role in the production of glyoxylate, which undergoes oxidation to produce oxalate. When the renal secretion capacity exceeds, calcium oxalate forms stones that accumulate in the kidneys. In this respect, detailed QSAR analysis, molecular docking, and dynamics simulations of a series of inhibitors containing glycolic, glyoxylic, and salicylic acid groups have been performed employing different regression machine learning techniques. Three robust models with less than 9 descriptors-based on a tenfold cross (Q2 CV) and external (Q2 EXT) validation-were found i.e., MLR1 (Q2 CV = 0.893, Q2 EXT = 0.897), RF1 (Q2 CV = 0.889, Q2 EXT = 0.907), and IBK1 (Q2 CV = 0.891, Q2 EXT = 0.907). An ensemble model was built by averaging the predicted pIC50 of the three models, obtaining a Q2 EXT = 0.933. Physicochemical properties such as charge, electronegativity, hardness, softness, van der Waals volume, and polarizability were considered as attributes to build the models. To get more insight into the potential biological activity of the compouds studied herein, docking and dynamic analysis were carried out, finding the hydrophobic and polar residues show important interactions with the ligands. A screening of the DrugBank database V.5.1.7 was performed, leading to the proposal of seven commercial drugs within the applicability domain of the models, that can be suggested as possible PHT1 treatment.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Oxirredutases do Álcool
17.
Foods ; 11(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36359940

RESUMO

Rice bran (RB) is a valuable byproduct derived from rice milling that represents an excellent opportunity for dietary inclusion. Bioactive components with antioxidant potential have been reported in RB, gaining the considerable attention of researchers. However, RB requires a stabilization process after milling to prevent it from becoming rancid and promote its commercial consumption. The aim of this study was to evaluate the effects of substituting stabilized rice bran (SRB) for wheat flour at levels of 10, 15, 20 and 25% on the proximate composition, dietary fiber, dough rheology, antioxidant properties, content of bioactive compounds, and sensory attributes of white wheat-based bread. Results indicated that the incorporation of SRB increased the bread's insoluble dietary fiber, phytic acid, total polyphenol content, γ-oryzanol, γ-aminobutyric acid, and antioxidant properties, while decreased its water absorption capacity, elasticity, volume, ß-glucans, and soluble dietary fiber content. Moreover, substituting wheat flour for SRB at levels higher than 15% affected sensory attributes, such as color, odor, flavor, and softness. This study highlights the potential application of SRB flour in bread-making to increase nutritional, and functional properties of white wheat bread.

18.
J Thorac Dis ; 14(9): 3376-3385, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36245612

RESUMO

Background: Primary thoracic sarcomas (PTS) including primary pulmonary and chest wall sarcomas (CWS), are aggressive lung malignancies with limited information specially in an advanced/unresectable setting. Unfortunately, prognostic factors for these malignancies are not well identified. Methods: Retrospective cohort analysis of patients diagnosed with unresectable/advanced soft tissue PTS from a third level reference institute. Univariate and multivariate analysis performed via Cox-regression model. Progression-free survival (PFS) and overall survival (OS) analysis via Kaplan-Meier method. Results: A total of 157 patients were identified, 55.4% female, mean age 51.8 years (range, 18-90 years), 19.1% tobacco exposure and 10.8% asbestos exposure. The most common performance status was Eastern Cooperative Oncology Group (ECOG) 1 (38.9%), most common clinical presentation cough (58.4%) and thoracic pain (55.4%). Undifferentiated sarcoma (37.6%) followed by synovial sarcoma (34.4%) were the most common histologies. Most patients received five chemotherapeutic cycles (37.6%), 57.3% of patients obtained a partial response and 61.1% an overall response rate (ORR). Median PFS was 9 months [95% confidence interval (CI): 8.717-9.283 months]. The multivariable analysis identified ECOG ≥2, a poorer response to chemotherapy (less number of chemotherapy cycles) and an increase Response Evaluation Criteria in Solid Tumors (RECIST) to be associated with a shorter progression-free period. Median OS was 11 months (95% CI: 10.402-11.958 months) with an ECOG ≥2 and a poorer response to chemotherapy (less number of chemotherapy cycles) associated with a shorter survival. Conclusions: Age, gender, comorbidities, tobacco and asbestos exposure, clinical presentation and histopathological diagnosis are not useful prognostic factors in unresectable/advanced PTS, however, an adequate initial ECOG, RECIST and a better response to chemotherapy should be used as prognostic factors in the management of these tumors.

19.
Am J Ophthalmol ; 244: 58-67, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35952753

RESUMO

PURPOSE: To determine prevalence of probable polypoidal choroidal vasculopathy (PCV) among White patients with neovascular age-related macular degeneration (nAMD) using non-indocyanine green angiography (ICGA) criteria DESIGN: Multicenter, multinational, retrospective, cross-sectional study. METHODS: A total of 208 treatment-naive eyes from Hispanic and non-Hispanic White individuals diagnosed with nAMD were included. All underwent color fundus photography (CFP), optical coherence tomography (OCT), and fluorescein angiography (FFA). De-identified images of study eyes were sent to 2 groups of graders. Group 1 reviewed CFP, OCT, and FFA to confirm nAMD diagnosis. Group 2 reviewed CFP and OCT to determine highly suggestive features for PCV. Probable PCV diagnosis defined as the presence of ≥2 of 4 highly suggestive features for PCV: notched or fibrovascular pigment epithelial detachment (PED) on CFP, sharply-peaked PED, notched PED, and hyperreflective ring on OCT. RESULTS: Eleven eyes were excluded because of poor image quality (6) or non-nAMD diagnosis (5). Of 197 eligible eyes (197 patients), the mean age (SD) was 78.8 years (8.9), 44.2% were men, 26.4% were Hispanic, and 73.6% were non-Hispanic White individuals; 41.1%, 23.4%, 9.1%, and 2.5% had ≥1, ≥2, ≥3, and 4 highly suggestive features. Results showed that 23.4% (95% CI, 17.6%-29.9%) had probable PCV diagnosis. Predominantly occult CNV was more frequently found in probable PCV than nAMD subgroup (84.8% vs 64.9%, P = .01). Hispanic White individuals had a lower prevalence of probable PCV than non-Hispanic White individuals (9.6% vs 28.2%, P = .006) CONCLUSIONS: These findings suggest that probable PCV occurs between 17.6% and 29.9% in White individuals with nAMD, and more commonly in non-Hispanic than in Hispanic White individuals.


Assuntos
Neovascularização de Coroide , Degeneração Macular , Pólipos , Descolamento Retiniano , Masculino , Humanos , Idoso , Feminino , Neovascularização de Coroide/diagnóstico , Neovascularização de Coroide/epidemiologia , Estudos Retrospectivos , Estudos Transversais , População Branca , Angiofluoresceinografia/métodos , Tomografia de Coerência Óptica/métodos , Pólipos/diagnóstico , Pólipos/epidemiologia , Corioide/irrigação sanguínea
20.
Front Chem ; 10: 900622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898970

RESUMO

An important target of photoelectrocatalysis (PEC) technology is the development of semiconductor-based photoelectrodes capable of absorbing solar energy (visible light) and promoting oxidation and reduction reactions. Bismuth oxyhalide-based materials BiOX (X = Cl, Br, and I) meet these requirements. Their crystalline structure, optical and electronic properties, and photocatalytic activity under visible light mean that these materials can be coupled to other semiconductors to develop novel heterostructures for photoelectrochemical degradation systems. This review provides a general overview of controlled BiOX powder synthesis methods, and discusses the optical and structural features of BiOX-based materials, focusing on heterojunction photoanodes. In addition, it summarizes the most recent applications in this field, particularly photoelectrochemical performance, experimental conditions and degradation efficiencies reported for some organic pollutants (e.g., pharmaceuticals, organic dyes, phenolic derivatives, etc.). Finally, as this review seeks to serve as a guide for the characteristics and various properties of these interesting semiconductors, it discusses future PEC-related challenges to explore.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...