Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896823

RESUMO

Cowpea chlorotic mottle virus (CCMV) and brome mosaic virus (BMV) are naked plant viruses with similar characteristics; both form a T = 3 icosahedral protein capsid and are members of the bromoviridae family. It is well known that these viruses completely disassemble and liberate their genome at a pH around 7.2 and 1 M ionic strength. However, the 1 M ionic strength condition is not present inside cells, so an important question is how these viruses deliver their genome inside cells for their viral replication. There are some studies reporting the swelling of the CCMV virus using different techniques. For example, it is reported that at a pH~7.2 and low ionic strength, the swelling observed is about 10% of the initial diameter of the virus. Furthermore, different regions within the cell are known to have different pH levels and ionic strengths. In this work, we performed several experiments at low ionic strengths of 0.1, 0.2, and 0.3 and systematically increased the pH in 0.2 increments from 4.6 to 7.4. To determine the change in virus size at the different pHs and ionic strengths, we first used dynamic light scattering (DLS). Most of the experiments agree with a 10% capsid swelling under the conditions reported in previous works, but surprisingly, we found that at some particular conditions, the virus capsid swelling could be as big as 20 to 35% of the original size. These measurements were corroborated by atomic force microscopy (AFM) and transmission electron microscopy (TEM) around the conditions where the big swelling was determined by DLS. Therefore, this big swelling could be an easier mechanism that viruses use inside the cell to deliver their genome to the cell machinery for viral replication.


Assuntos
Bromovirus , Vírus de Plantas , Bromovirus/genética , Proteínas do Capsídeo/metabolismo , Capsídeo , Concentração Osmolar
2.
Microsc Res Tech ; 85(11): 3694-3706, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36250444

RESUMO

Calcium oxalate (CaOx) crystals in plants are formed in crystal idioblasts cells and have specific geometric shapes. Their proposed functions include calcium homeostasis and carbon source, among others. Amaranth is a plant that presents high tolerance to abiotic stresses and accumulates considerable amounts of CaOx crystals; however, few studies have focused on characterizing the crystals ultrastructure and none is related to identifying proteins bound to them. This information is of great interest to understand the mechanisms related to CaOx crystal formation and to support their proposed functions. Thus, this work aimed to characterize CaOx crystals in amaranth leaves. Crystals were purified and the proteins bound to them were isolated and identified by nLC-MS/MS. Leaf sections were analyzed by light and electron microscopy. The identified proteins were related to the chloroplast such as ATPb synthase, RuBisCO large subunit, and cell wall-related proteins, which were validated by immunohistochemistry and immunogold labeling. In addition, it was observed that CaOx crystal idioblasts were formed from parenchyma cells associated with mesophyll and veins, in which the thylakoid membranes of degraded chloroplasts turned into crystal chambers. These results significantly advance our understanding of the mechanisms of CaOx crystal formation and the potential function as an alternative carbon source in leaves.


Assuntos
Oxalato de Cálcio , Cálcio , Oxalato de Cálcio/química , Carbono , Cloroplastos/metabolismo , Cristalização , Ribulose-Bifosfato Carboxilase , Espectrometria de Massas em Tandem
3.
Cell Tissue Res ; 390(3): 385-398, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36075993

RESUMO

Branchial chambers constitute the main osmoregulatory site in almost all decapod crustaceans. However, few studies have been devoted to elucidate the cellular function of specific cells in every osmoregulatory structure of the branchial chambers. In decapod crustaceans, it is well-known that the osmoregulatory function is localized in specific structures that progressively specialize from early developmental stages while specific molecular mechanisms occur. In this study, we found that although the structures developed progressively during the larval and postlarval stages, before reaching juvenile or adult morphology, the osmoregulatory capabilities of Litopenaeus vannamei were gradually established only during the development of branchiostegites and epipodites, but not gills. The cellular structures of the branchial chambers observed during the larval phase do not present the typical ultrastructure of ionocytes, neither Na+/K+-ATPase expression, likely indicating that pleura, branchiostegites, or bud gills do not participate in osmoregulation. During early postlarval stages, the lack of Na+/K+-ATPase immunoreactivity of the ionocytes from the branchiostegites and epipodites suggests that they are immature ionocytes (ionocytes type I). It could be inferred from IIF and TEM results that epipodites and branchiostegites are involved in iono-osmoregulation from PL15, while gills and pleura do not participate in this function.


Assuntos
Penaeidae , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , Osmorregulação , Equilíbrio Hidroeletrolítico , Brânquias , Larva/metabolismo , Salinidade
4.
MethodsX ; 9: 101798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958095

RESUMO

Although calcium oxalate (CaOx) crystals are present in many plants they are poorly studied. A possible limitation is the lack of methods for CaOx crystals isolation at high concentration and high purity, which is required for the analysis of their associated biomolecules such as proteins. To our knowledge, there are only four works that have isolated proteins from CaOx crystals. Those methods basically consist of grinding the plant material, filtration steps, enzymatic digestions, and density-based separation. However, they lack of steps to evaluate the quality and purity of the isolated crystals. Likewise, those works do not evaluate whether the crystals obtained carry contaminating proteins. In the present work a detailed method for CaOx crystals isolation from amaranth leaves is described, which can be used to isolate crystals from other plant leaves. The present method is based on previous works with the addition of cleaning steps to removal contaminating protein, separation of crystals by size, and microscopic monitoring to validate the purification efficiency. Main steps for CaOx crystals isolation:•Plant leaves are ground and several washing steps, including enzymatic digestions and centrifugation, are carried out to remove cellular debris and contaminating proteins.•CaOx crystals are enriched by centrifugation in sodium polytungstate.•The different forms of crystals are separated by filtration.

5.
Front Cell Neurosci ; 16: 1037641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36744061

RESUMO

Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.

6.
PLoS One ; 13(7): e0200422, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016339

RESUMO

To our knowledge, there are no studies about the structure and ecological function of extrafloral nectaries (EFNs) in Opuntia robusta. This is the first description of EFNs in O. robusta, where young spines have an interesting structure and a secreting function, which are different from EFNs described in other Cactaceae species. We used light, scanning-electron, and transmission-electron microscopy to examine morphology, anatomy, and ultrastructure of the secretory spines in areoles in female and hermaphrodite individuals of O. robusta. Young cladodes develop areoles with modified and secretory spines as EFNs only active during the early growth phase. EFNs are non-vascularized structures, with no stomata, that consist of a basal meristematic tissue, a middle elongation region, and an apical secretory cone formed by large globular epidermal cells, containing nectar and medullar elongated cells. We observed the presence of Golgi apparatus, vesicles and plastids in the medullar and sup-epidermal cells of the spine. We propose that the nectar is stored in the globular cells at the apex of the spine and secreted by breaking through the globular cells or by pores. We recorded a more frequent presence of ants on younger cladode sprouts producing young secreting spines: this result is parallel with the predictions of Optimal Defense Hypothesis, which states that younger plant organs should be better defended than older ones because their loss produces a higher fitness impairment. Although Diaz-Castelazo's hypothesis states that a more complex structure of EFNs correlates with their lower among-organs dispersion, comparing to less complex EFNs, non-vascularized structure of EFNs in O. robusta is not associated with their higher among-organs dispersion likened to O. stricta, which produces vascularized EFNs. We provide evidence that this characteristic is not a good taxonomic feature of Opuntia genus. Moreover, the comparison of EFNs of O. robusta and O. stricta suggests that the hypothesis of Diaz-Castelazo should be revised: it is rather a rule but not a law.


Assuntos
Opuntia/anatomia & histologia , Opuntia/metabolismo , Néctar de Plantas/metabolismo , Animais , Formigas , Comportamento Apetitivo , Umidade , Opuntia/ultraestrutura , Temperatura
7.
Int J Hypertens ; 2016: 5830192, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293881

RESUMO

The role of the renin-angiotensin system (RAS) in blood pressure regulation in MS during aging is unknown. It participates in metabolic syndrome (MS) and aging regulating vascular tone and remodeling. RAS might participate in a compensatory mechanism decreasing blood pressure and allowing MS rats to reach 18 months of age and it might form part of therapeutical procedures to ameliorate MS. We studied histological changes and distribution of RAS receptors in aortas of MS aged rats. Electron microscopy images showed premature aging in MS since the increased fibrosis, enlarged endothelium, and invasion of this layer by muscle cells that was present in control 18-month-old aortas were also found in 6-month-old aortas from MS rats. AT1, AT2, and Mas receptors mediate the effects of Ang II and Ang 1-7, respectively. Fluorescence from AT2 decreased with age in control and MS aortas, while fluorescence of AT1 increased in aortas from MS rats at 6 months and diminished during aging. Mas expression increased in MS rats and remained unchanged in control rats. In conclusion, there is premature aging in the aortas from MS rats and the elevated expression of Mas receptor might contribute to decrease blood pressure during aging in MS.

8.
Am J Physiol Regul Integr Comp Physiol ; 310(1): R24-32, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491100

RESUMO

Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses.


Assuntos
Candida glabrata/metabolismo , Candidíase/metabolismo , Membrana Celular/metabolismo , Circulação Coronária , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Função Ventricular Esquerda , Angiotensina II/farmacologia , Animais , Bradicinina/farmacologia , Candida glabrata/genética , Candida glabrata/ultraestrutura , Candidíase/genética , Candidíase/microbiologia , Candidíase/fisiopatologia , Membrana Celular/microbiologia , Membrana Celular/ultraestrutura , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/microbiologia , Vasos Coronários/fisiopatologia , Vasos Coronários/ultraestrutura , Células Endoteliais/microbiologia , Células Endoteliais/ultraestrutura , Glicosilação , Cobaias , Interações Hospedeiro-Patógeno , Preparação de Coração Isolado , Manose/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mutação , Contração Miocárdica , Fenilefrina/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Endotelina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Molécula 1 de Adesão de Célula Vascular/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Pressão Ventricular
9.
Fungal Genet Biol ; 80: 43-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25986172

RESUMO

Candida glabrata is a haploid yeast considered the second most common of the Candida species found in nosocomial infections, accounting for approximately 18% of candidemias worldwide. Even though molecular biology methods are easily adapted to study this organism, there are not enough vectors that will allow probing the transcriptional and translational activity of any gene of interest in C. glabrata. In this work we have generated a set of expression vectors to systematically tag any gene of interest at the carboxy-terminus with three different fluorophores (CFP, YFP and mCherry) or three epitopes (HA, FLAG or cMyc) independently. This system offers the possibility to generate translational fusions in three versions: under the gene's own promoter integrated in its native locus in genome, on a replicative plasmid under its own promoter, or on a replicative plasmid under a strong promoter to overexpress the fusions. The expression of these translational fusions will allow determining the transcriptional and translational activity of the gene of interest as well as the intracellular localization of the protein. We have tested these expression vectors with two biosynthetic genes, HIS3 and TRP1. We detected fluorescence under the microscope and we were able to immunodetect the fusions using the three different versions of the system. These vectors permit coexpression of several different fusions simultaneously in the same cell, which will allow determining protein-protein and protein-DNA interactions. This set of vectors adds a new toolbox to study expression and protein interactions in the fungal pathogen C. glabrata.


Assuntos
Candida glabrata/genética , Epitopos/genética , Vetores Genéticos/metabolismo , Proteínas Luminescentes/genética , Proteínas Recombinantes de Fusão/genética , Regiões 3' não Traduzidas , Candida glabrata/metabolismo , Técnicas Genéticas , Vetores Genéticos/química , Proteínas Luminescentes/química , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química
10.
Plant Physiol ; 167(4): 1541-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681328

RESUMO

Phloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders. The involvement of Arabidopsis (Arabidopsis thaliana) type I proton-pumping pyrophosphatase (AVP1) in phloem loading was analyzed at genetic, histochemical, and physiological levels. A transcriptional AVP1 promoter::GUS fusion revealed phloem activity in source leaves. Ubiquitous AVP1 overexpression (35S::AVP1 cassette) enhanced shoot biomass, photoassimilate production and transport, rhizosphere acidification, and expression of sugar-induced root ion transporter genes (POTASSIUM TRANSPORTER2 [KUP2], NITRATE TRANSPORTER2.1 [NRT2.1], NRT2.4, and PHOSPHATE TRANSPORTER1.4 [PHT1.4]). Phloem-specific AVP1 overexpression (Commelina Yellow Mottle Virus promoter [pCOYMV]::AVP1) elicited similar phenotypes. By contrast, phloem-specific AVP1 knockdown (pCoYMV::RNAiAVP1) resulted in stunted seedlings in sucrose-deprived medium. We also present a promoter mutant avp1-2 (SALK046492) with a 70% reduction of expression that did not show severe growth impairment. Interestingly, AVP1 protein in this mutant is prominent in the phloem. Moreover, expression of an Escherichia coli-soluble pyrophosphatase in the phloem (pCoYMV::pyrophosphatase) of avp1-2 plants resulted in severe dwarf phenotype and abnormal leaf morphology. We conclude that the Proton-Pumping Pyrophosphatase AVP1 localized at the plasma membrane of the sieve element-companion cell complexes functions as a synthase, and that this activity is critical for the maintenance of pyrophosphate homeostasis required for phloem function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Difosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Pirofosfatase Inorgânica/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Expressão Gênica , Genes Reporter , Homeostase , Pirofosfatase Inorgânica/genética , Mutação , Especificidade de Órgãos , Fenótipo , Floema/enzimologia , Floema/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sacarose/metabolismo
11.
Plant Sci ; 181(1): 23-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21600394

RESUMO

Previous literature has shown the presence of a plasma membrane (PM) localized type I H(+)-PPase in sieve elements of Ricinus communis. Unfortunately, the physiological relevance of these findings remains obscure due to the lack of genetic and molecular reagents to study R. communis. The availability of H(+)-PPase gain and loss-of-function mutants in Arabidopsis thaliana makes this plant an attractive genetic model to address the question, but data on the PM localization of this H(+)-PPase in A. thaliana are limited to two proteomic approaches. Here we present the first report on the localization of the type I H(+)-PPase AVP1 in sieve element-companion cell complexes (SE-CCc) from A. thaliana. Double epifluorescence and immunogold labeling experiments are consistent with the co-localization of AVP1 and PIP1 (a bona fide PM maker) in PM of SE-CCc from A. thaliana.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Membrana Celular/enzimologia , Pirofosfatase Inorgânica/química , Aquaporinas/química , Arabidopsis/ultraestrutura , Membrana Celular/ultraestrutura , Técnica Indireta de Fluorescência para Anticorpo/métodos , Imuno-Histoquímica/métodos , Floema/química , Floema/ultraestrutura , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química
12.
Yeast ; 24(1): 17-25, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17192853

RESUMO

Mating in yeast is initiated by binding of pheromone to G-protein-coupled receptors expressed in haploid cells. We analysed the role of KlSte2p and KlSte3p receptors in the Kluyveromyces lactis mating pathway. By sequence analysis, KlSte2p and KlSte3p are the homologues of the Saccharomyces cerevisiae alpha-pheromone and a-pheromone receptors, respectively. However, by expression experiments, we determined that KlSTE2 gene is expressed in the cells typified as MATalpha and therefore is the receptor for the K. lactis a-pheromone and KlSTE3 gene is expressed in the MATa cells and binds the alpha-pheromone. The KlSTE2 gene is silent in MATa cells, while it is highly expressed in MATalpha cells, and conversely the KlSTE3 gene is expressed in MATa cells and repressed in MATalpha cells. Disruption mutants of both genes were found to be sterile, and this defect is reversed by plasmidic copies of each gene. The cytoplasmic C-terminus of KlSte3p interacts strongly with the KlGpa1p (Galpha) subunit, which is involved in the transduction of the pheromone stimulus to induce mating. Remarkably, this same domain does not interact with a constitutive active allele of the Galpha subunit, indicating that the C-terminus is able to discriminate between the active (GTP-bound) and inactive (GDP-bound) forms of the Galpha subunit.


Assuntos
Genes Fúngicos Tipo Acasalamento/fisiologia , Kluyveromyces/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Sequência de Aminoácidos , Northern Blotting , DNA Fúngico/química , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genética , Haploidia , Kluyveromyces/genética , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese Insercional , Feromônios/genética , Feromônios/fisiologia , Reação em Cadeia da Polimerase , Receptores Acoplados a Proteínas G/genética , Receptores de Feromônios/genética , Receptores de Feromônios/fisiologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...