Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(9): 11515-11523, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33634701

RESUMO

Previously, Cu2O cubes have been shown to remain photocatalytically inert toward methyl orange degradation even after surface decoration with ZnO, ZnS, CdS, and Ag3PO4 nanostructures. Surprisingly, when Ag2S nanoparticles are lightly deposited on Cu2O cubes as seen through scanning electron microscopy (SEM) images, the heterostructures become highly photocatalytically active. X-ray diffraction (XRD) patterns show mainly Cu2O diffraction peaks due to lightly deposited Ag2S, but Ag2S peaks can emerge with increased Ag2S deposition. X-ray photoelectron spectroscopy (XPS) analysis also supports Ag2S formation on Cu2O crystals. The Ag2S-deposited Cu2O octahedra and rhombic dodecahedra show the expected activity enhancement. Electron paramagnetic resonance (EPR) measurements, as well as electron, hole, and radical scavenger tests, all confirmed the emergence of photocatalytic activity from the Ag2S-Cu2O cubes. Photoluminescence lifetimes are shortened after Ag2S deposition. Electrochemical impedance measurements revealed a large decrease in charge transfer resistance for Cu2O cubes after the Ag2S deposition. Unexpectedly, the separately synthesized Ag2S particles are also photocatalytically inactive. No specific lattice planes of Ag2S are formed directly over the {100} face of Cu2O. Diffuse reflectance and ultraviolet photoelectron spectral data were used to construct band diagrams of different Cu2O crystals and Ag2S nanoparticles. A Z-scheme charge transfer mechanism may be involved at the heterojunction interface to promote charge carrier separation. However, to explain the sudden appearance of photocatalytic activity from the Ag2S-deposited Cu2O cubes, a large change in the {100} surface band bending after Ag2S deposition should be used. This work illustrates that an unusual photocatalytic outcome is possible to semiconductor heterojunctions, where two photocatalytically inert components can become highly active when joined together.

2.
ACS Cent Sci ; 6(6): 984-994, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32607445

RESUMO

Cu2O rhombic dodecahedra, octahedra, and cubes were densely modified with conjugated 4-ethynylaniline (4-EA) for facet-dependent photocatalytic activity examination. Infrared spectroscopy affirms bonding of the acetylenic group of 4-EA onto the surface copper atoms. The photocatalytically inactive Cu2O cubes showed surprisingly high activity toward methyl orange photodegradation after 4-EA modification, while the already active Cu2O rhombic dodecahedra and octahedra exhibited a photocatalytic activity enhancement. Electron, hole, and radical scavenger experiments prove that the photocatalytic charge transport processes have occurred in the functionalized Cu2O cubes. Electrochemical impedance spectroscopy also indicates reduced charge transfer resistance of the functionalized Cu2O crystals. A band diagram constructed from UV-vis spectral and Mott-Schottky measurements reveals significant band energy shifts in all Cu2O samples after decorating with 4-EA. From density functional theory (DFT) calculations, a new band has emerged slightly above the valence band maximum within the band gap of Cu2O, which has been found to originate from 4-EA through band-decomposed charge density analysis. The increased charge density localized on the 4-EA molecule and the smallest electron transition energy to reach the 4-EA-generated band are factors making {100}-bound Cu2O cubes photocatalytically active. Proper molecular decoration represents a powerful approach to improving the photocatalytic efficiency of semiconductors.

3.
ACS Appl Mater Interfaces ; 6(15): 12629-39, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25029665

RESUMO

Hydrothermally grown one-dimensional ZnO nanowire (1D ZnO NW) and a newly synthesized metal-free, D-π-A type, carbazole dye (SK1) sensitizer-based photovoltaic device with a power conversion efficiency (PCE) of more than 5% have been demonstrated by employing the cobalt tris(2,2'-bipyridyl) redox shuttle. A short-circuit current density (Jsc) of ∼12.0 mA/cm(2), an open-circuit voltage (Voc) of ∼719 mV, and a fill factor (FF) of ∼65% have been afforded by the 1D ZnO NW-based dye-sensitized solar cell (DSSC) incorporating [Co(bpy)3](3+/2+) complex as the one-electron redox mediator. In contrast, the identical DSSC with traditional I3(-)/I(-) electrolyte has shown a Jsc ≈ 12.2 mA/cm(2), a Voc ≈ 629 mV, and a FF ≈ 62%, yielding a PCE of ∼4.7%. The persuasive role of the inherent superior electron transport property of 1D ZnO NWs in enhancing the device efficiency is evidenced from the impoverished performance of the DSSCs with photoanodes fabricated using ZnO nanoparticles (NPs). The DSSCs having ZnO NP-based photoanodes have achieved the PCEs of ∼3.6% and ∼3.2% using cobalt- and iodine-based redox electrolytes, respectively. The electronic interactions between the SK1 sensitizer and ZnO (NWs and NPs) to induce the photogenerated charge transfer from SK1 to the conduction band (CB) of ZnO are evidenced from the significant quenching of photoluminescence and exciton lifetime decay of SK1, when it is anchored onto the ZnO architectures. The energetics of the SK1 dye molecule are estimated by combining the spectroscopic and electrochemical techniques. The electronic distributions of SK1 dye molecule in its HOMO and LUMO energy levels are interpreted using density functional theory (DFT)-based calculations. The electron donor-π linker-acceptor (D-π-A) configuration of SK1 dye provides an intramolecular charge transfer within the molecule, prompting the electron migration from the carbazole donor to cyanoacrylic acceptor moiety via the oligo-phenylenevinylene linker group. The D-π-A-mediated electron movement witnesses the favorable photoexcited electron transfer from the LUMO of SK1 dye to the CB of ZnO through the carboxyl anchoring group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...