Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(6): 6128-6146, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371841

RESUMO

Generation of hydrogen is one of the most promising routes to harvest solar energy for its sustainable utilization. Among different routes, the photoelectrochemical (PEC) process to split water using solar light to produce hydrogen is the green method to generate hydrogen. The sluggish kinetics through complicated pathways makes the oxygen evolution reaction the rate limiting step of the overall water splitting process. Therefore, development of an efficient photoanode for the sustainable oxidation of water is most challenging in an efficient overall PEC water splitting process. The low solar to hydrogen conversion efficiency arises from the slow surface kinetics, poor hole diffusion, and fast charge recombination processes. There have been strategies to improve catalytic performances through the removal of such detrimental effects. The generation of engineered surfaces is one of the important strategies recently adopted for the enhancement of the catalytic efficiencies. The present review has been focused on the discussion of engineered surfaces using crystal facet engineering, protective surface layer, passivation using the atomic layer deposition (ALD) technique, and cocatalyst modified surfaces to enhance the catalytic efficiency. Some of the important parameters defining catalyst performance are also discussed at the beginning of the review.

2.
Chemosphere ; 353: 141504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403120

RESUMO

The selective removal of pollutants from water bodies is regarded as a conciliation between the rapid expansion of industrial activities and need of clean water for sustainability. Fluoride is one such geogenic pollutant, and various materials have already been reported. Developing an efficient field employable material is however a challenge. Herein, we report the synthesis and competencies of strategically designed magnetic La-doped Al2O3 core-shell nanoparticle loaded polymeric nanohybrid as a benchmark fluoride sorbent. A facile synthesis strategy involved fabrication of Fe3O4 magnetic core followed by growth of La doped Al2O3 shell using sol-gel method. Doping of La2O3 into Al2O3 structure was optimised (6%), resulting in Fe3O4-Al0.94 La0.06O1.5 core-shell particles which provided exceptional fluoride affinity. The obtained magnetic Fe3O4-Al0.94La0.06O1.5 core-shell nanoparticles were then loaded (22%) into alginate to form cross-linked hydrogel beads (Fe3O4-Al0.94 La0.06 O1.5-Ca-ALG). These prepared hydrogel beads were characterised and utilized for selective recovery of fluoride under different ambient conditions. Driving forces for enhanced fluoride uptake by La doped Al2O3 were investigated and explained with the help of both experimental observation and theoretical simulation. Density functional theory calculations indicated significant expansion in the cell volume of Al2O3 due to La doping which favoured the fluoride sorption. The calculated defect formation energy for the incorporation of F into Al2O3 was found to decrease in the presence of La. XPS analysis suggested direct interaction of fluoride with Al, forming Al-F bond and breaking Al-O bond. Different vital parameters for uptake were optimised. Also, kinetics, isotherm and diffusion models were evaluated. Developed hydrogel beads attained record sorption capacity of 132.3 mgg-1 for fluoride. Overall, excellent stability, no leaching of constituents, effectiveness for selective fluoride recovery from groundwater, brand it a perfect epitome of sustainable water treatment application.


Assuntos
Fluoretos , Nanopartículas , Hidrogéis/química , Adsorção , Fenômenos Magnéticos , Cinética
3.
J Chem Phys ; 129(16): 164904, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19045311

RESUMO

Excess-entropy scaling relationships for diffusivity and viscosity of Lennard-Jones chain fluids are tested using molecular dynamics simulations for chain sizes that are sufficiently small that chain entanglement effects are insignificant. The thermodynamic excess entropy S(e) is estimated using self-associating fluid theory (SAFT). A structural measure of the entropy S(2) is also computed from the monomer-monomer pair correlation function, g(m)(r). The thermodynamic and structural estimators for the excess entropy are shown to be very strongly correlated. The dimensionless center-of-mass diffusivities, D(cm) (*), obtained by dividing the diffusivities by suitable macroscopic reduction parameters, are shown to conform to the excess entropy scaling relationship, D(cm) (*)=A(n) exp(alpha(n)S(e)), where the scaling parameters depend on the chain length n. The exponential parameter alpha(n) varies as -(1n) while A(n) varies approximately as n(-0.5). The scaled viscosities obey a similar relationship with scaling parameters B(n) and beta(n) where beta(n) varies as 1n and B(n) shows an approximate n(0.6) dependence. In accordance with the Stokes-Einstein law, for a given chain length, alpha(n)=-beta(n) within statistical error. The excess entropy scaling parameters associated with the transport properties therefore display a simple dependence on chain length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...