Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(27): 10342-10358, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35759456

RESUMO

The presence of lanthanide-tellurite "anti-glass" nanocrystalline phases not only affects the transparency in glass-ceramics (GCs) but also influences the emission of a dopant ion. Therefore, a methodical understanding of the crystal growth mechanism and local site symmetry of doped luminescent ions when embedded into the precipitated "anti-glass" phase is crucial, which unfolds the practical applications of GCs. Here, we examined the Ln2Te6O15 "anti-glass" nanocrystalline phase growth mechanism and local site symmetry of Eu3+ ions in transparent GCs produced from 80TeO2-10TiO2-(5 - x)La2O3-5Gd2O3-xEu2O3 glasses, where x = 0, 1, 2. A crystallization kinetics study identifies a unique crystal growth mechanism via a constrained nucleation rate. The extent of "anti-glass" phase precipitation and its growth in GCs with respect to heat-treatment duration is demonstrated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. Qualitative analysis of XRD confirms the precipitation of both La2Te6O15 and Gd2Te6O15 nanocrystalline phases. Rietveld refinement of powder X-ray diffraction patterns reveals that Eu3+ ions occupy "Gd" sites in Gd2Te6O15 over "La" sites in La2Te6O15. Raman spectroscopy reveals the conversion of TeO3 units to TeO4 units with Eu2O3 addition. This confirms the polymerizing role of Eu2O3 and consequently high crystallization tenacity with increasing Eu2O3 concentration. The measured Eu3+ ion photoluminescence spectra revealed its local site symmetry. Moreover, the present GCs showed adequate thermal cycling stability (∼50% at 423 K) with the highest activation energy of around 0.3 eV and further suggested that the present transparent GCs would be a potential candidate for the fabrication of red-light-emitting diodes (LEDs) or red component phosphor in W-LEDs.

2.
Phys Chem Chem Phys ; 23(28): 15245-15256, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236065

RESUMO

Globally, phosphor converted white-LEDs (W-LEDs) are among the most suitable sources to reduce energy consumption. Nevertheless, modernization of efficient broadband emitting phosphors is most crucial to improve the W-LED performance. Herein, we synthesized a series of novel broadband emitting Sr2-xAl3O6F:xEu2+ phosphors via a new microwave-assisted diffusion method. Rietveld refinement of the obtained X-ray diffraction results was performed to recognize the exact crystal phase and the various cationic sites. Oxygen vacancies (VO) formed under synthetic reducing conditions enabled Sr2Al3O6F to demonstrate bright self-activated bluish emission. Doping of Eu2+ ions unlocked the energy transfer process from the host to the activator ions, owing to which, the self-activated emission diminished and the Eu2+-doped sample showed amplified bluish-green emission. The gradual increase in Eu2+ concentrations regulated the controllable emissions from the bluish (0.34, 0.42) to the greenish (0.38, 0.43) zone under UV excitation. Because of the different absorption preferences of Eu2+ ions located at the different Sr2+ sites, Sr2-xAl3O6F:xEu2+ exhibited bluish-white emission under blue irradiation. A further enhancement in PL intensity had been observed by the cation substitution of Ba2+ for Sr2+ sites in the optimum Sr1.95Al3O6F:0.05Eu2+ phosphor. The as-fabricated W-LEDs utilizing the optimized Sr1.75Ba0.2Al3O6F:0.05Eu2+ phosphor exhibited a cool-white light emission along with a 372 nm NUV-LED and a 420 nm blue-LED with a moderate CRI of 70 and a CCT above 6000 K. Such cool white emission was controlled to natural white with the CCT close to 5000 K, and the CRI above 80 via utilizing a suitable red emitting phosphor. The W-LED performances of the optimized phosphor justified its applicability to produce white light for lighting applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...