Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19999-20009, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971371

RESUMO

Cyclic volatile methyl siloxanes (cVMS) are ubiquitous in hair care products (HCPs). cVMS emissions from HCPs are of concern, given the potential adverse impact of siloxanes on the environment and human health. To characterize cVMS emissions and exposures during the use of HCPs, realistic hair care experiments were conducted in a residential building. Siloxane-based HCPs were tested using common hair styling techniques, including straightening, curling, waving, and oiling. VOC concentrations were measured via proton-transfer-reaction time-of-flight mass spectrometry. HCP use drove rapid changes in the chemical composition of the indoor atmosphere. cVMS dominated VOC emissions from HCP use, and decamethylcyclopentasiloxane (D5) contributed the most to cVMS emissions. cVMS emission factors (EFs) during hair care routines ranged from 110-1500 mg/person and were influenced by HCP type, styling tools, operation temperatures, and hair length. The high temperature of styling tools and the high surface area of hair enhanced VOC emissions. Increasing the hair straightener temperature from room temperature to 210 °C increased cVMS EFs by 50-310%. Elevated indoor cVMS concentrations can result in substantial indoor-to-outdoor transport of cVMS via ventilation (0.4-6 tons D5/year in the U.S.); thus, hair care routines may augment the abundance of cVMS in the outdoor atmosphere.


Assuntos
Preparações para Cabelo , Compostos Orgânicos Voláteis , Humanos , Siloxanas/análise , Espectrometria de Massas , Atmosfera , Preparações para Cabelo/análise , Monitoramento Ambiental
2.
Z Gesundh Wiss ; 30(1): 219-228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32337151

RESUMO

The novel coronavirus, since its first outbreak in December, has, up till now, affected approximately 114,542 people across 115 countries. Many international agencies are devoting efforts to enhance the understanding of the evolving COVID-19 outbreak on an international level, its influences, and preparedness. At present, COVID-19 appears to affect individuals through person-to-person means, like other commonly found cold or influenza viruses. It is widely known and acknowledged that viruses causing influenza peak during cold temperatures and gradually subside in the warmer temperature, owing to their seasonality. Thus, COVID-19, due to its regular flu-like symptoms, is also expected to show similar seasonality and subside as the global temperatures rise in the northern hemisphere with the onset of spring. Despite these speculations, however, the systematic analysis in the global perspective of the relation between COVID-19 spread and meteorological parameters is unavailable. Here, by analyzing the region- and city-specific affected global data and corresponding meteorological parameters, we show that there is an optimum range of temperature and UV index strongly affecting the spread and survival of the virus, whereas precipitation, relative humidity, cloud cover, etc. have no effect on the virus. Unavailability of pharmaceutical interventions would require greater preparedness and alert for the effective control of COVID-19. Under these conditions, the information provided here could be very helpful for the global community struggling to fight this global crisis. It is, however, important to note that the information presented here clearly lacks any physiological evidences, which may merit further investigation. Thus, any attempt for management, implementation, and evaluation strategies responding to the crisis arising due to the COVID-19 outbreak must not consider the evaluation presented here as the foremost factor.

3.
J Air Waste Manag Assoc ; 72(1): 3-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34170783

RESUMO

Respiratory droplets serve as a viable transmission mechanism for many viruses and other pathogens. Facemasks are commonly used to minimize the risk of this transmission. However, information on the size-resolved filtration efficiency of commonly available commercial facemasks is not readily available in the literature. To fill this gap, the current study performs aerosolized chamber experiments to evaluate the filtration efficiencies of commonly available commercial facemasks' materials in a size range of 0.3-10 µm. Results rank the performance of filtration through commercial facemasks' materials as follows (values in brackets indicate the average filtration efficiencies across 0.3-10 µm): 6-Layer N95 mask (0.918) > N95 mask - without valve (0.88) > KN95 mask (0.84) > N95 mask -with valve (0.834) > Heavy knitted cotton mask (0.808) > Surgical mask (0.778) > Cotton mask-2 layers (0.744) > Nylon fabric mask-2 layers (0.740) > T-shirt fabric mask-2 layers (0.708) > T-shirt fabric mask-1 layer (0.648). The size-resolved filtration efficiencies through the material across the evaluated commercial facemasks ranged from 38-83% in the size range of 0.3-0.5 µm, 55-88% in the size range of 0.5-1 µm, 69-93% in the size range of 1-2.5 µm, 76-96% in the size range of 2.5-5 µm, and 86-99% in the size range of 5-10 µm. Subsequently, the filtration efficiencies of materials post washing (with detergent in warm water and allowing to dry completely) were also evaluated. The average reduction in filtration efficiencies post washing are as follows: 6-Layer N95 mask: 3%, N95 mask - without valve: 2%, KN95 mask: 4%, N95 mask -with valve: 3%, Heavy knitted cotton mask: 4%, Surgical mask: 18%, Cotton mask-2 layers: 11%, Nylon fabric mask-2 layers: 6%, T-shirt fabric mask-2 layers: 6%, T-shirt fabric mask-1 layer: 8%. This decrease in the filtration efficiency was more pronounced for the sub-micron particles than the super-micron ones.Implications: Facemasks are commonly used to minimize the risk of pathogens through ambient air transmission. However, information on the size-resolved filtration efficiency of commonly available commercial facemasks materials is not readily available in the literature. To fill this gap, the current study performs aerosolized chamber experiments to evaluate the filtration efficiencies of commonly available commercial facemasks materials in a size range of 0.3-10 µm. The performance of the commercial facemasks materials as follows in the order of (values in brackets indicate the average filtration efficiencies across 0.3-10 µm): 6-Layer N95 mask (0.918) > N95 mask - without valve (0.88) > KN95 mask (0.84) > N95 mask -with valve (0.834) > Heavy knitted cotton mask (0.808) > Surgical mask (0.778) > Cotton mask-2 layers (0.744) > Nylon fabric mask-2 layers (0.740) > T-shirt fabric mask-2 layers (0.708) > T-shirt fabric mask-1 layer (0.648). The choice of facemask is greatly driven by the size of viable respiratory droplets that need to be eliminated. If droplets with particle size less than 0.5 µm are required to be filtered, N95 masks without the valve or more layers are preferred. If the primary objective is to filter particles between 0.5-1 µm, then N95 (both with or without valves) or KN95 masks are recommended. Surgical masks and heavy knitted cotton masks may also be used for this purpose, but with caution.


Assuntos
Máscaras , Dispositivos de Proteção Respiratória , Aerossóis , Filtração , Aerossóis e Gotículas Respiratórios
4.
Global Health ; 16(1): 45, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398137

RESUMO

The recent pandemic caused by the 2019 outbreak of novel coronavirus (2019-nCoV or COVID-19) has affected more than 3.0 million people resulting ~ 212,000 deaths across 215 countries/territories as on 28th April 2020. The importation of the cases owing to enormous international travels from the affected countries is the foremost reason for local cycle of transmission. For a country like India, the second most populous country in the world with ~ 1.35 billion population, the management and control of 2019-nCoV domestic spread heavily relied on effective screening and strict quarantine of passengers arriving at various international airports in India from affected countries. Here, by extracting the data from FLIRT, an online airline database for more than 800 airlines, and scanning more than 180,000 flights and 39.9 million corresponding passenger seats during 4th - 25th March, we show that India experienced the highest risk index of importing the passengers from middle eastern airports. Contrary to perception, travelers from China imposed lowest risk of importing the infected cases in India. This is clearly evident form the fact that while the number of infected cases were on the peak in China India was one of the least affected countries. The number of cases in India started exhibiting a sharp increase in the infected cases only after the European countries and USA recorded large number of infected cases. We further argue that while the number of cases in middle eastern countries may still be very low, the airports in middle eastern countries, particularly Dubai, being one of the largest transit hubs for international passengers, including arriving in India, might have posed a higher risk of getting infected with 2019-nCoV. We suggest that any future travel related disease infection screening at the airports should critically assess the passengers from major transit hubs in addition to affected country of origin.


Assuntos
Doenças Transmissíveis Importadas , Infecções por Coronavirus/transmissão , Surtos de Doenças/prevenção & controle , Pandemias , Pneumonia Viral/transmissão , Medição de Risco/métodos , Viagem , Aeronaves , Aeroportos , COVID-19 , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Humanos , Índia/epidemiologia , Programas de Rastreamento/métodos , Pneumonia Viral/epidemiologia , Quarentena , Doença Relacionada a Viagens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...