Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619087

RESUMO

Prion and prion-like diseases involve the propagation of misfolded protein conformers. Small-molecule pharmacological chaperones can inhibit propagated misfolding, but how they interact with disease-related proteins to prevent misfolding is often unclear. We investigated how pentosan polysulfate (PPS), a polyanion with antiprion activity in vitro and in vivo, interacts with mammalian prion protein (PrP) to alter its folding. Calorimetry showed that PPS binds two sites on natively folded PrP, but one PPS molecule can bind multiple PrP molecules. Force spectroscopy measurements of single PrP molecules showed PPS stabilizes not only the native fold of PrP but also many different partially folded intermediates that are not observed in the absence of PPS. PPS also bound tightly to unfolded segments of PrP, delaying refolding. These observations imply that PPS can act through multiple possible modes, inhibiting misfolding not only by stabilizing the native fold or sequestering natively folded PrP into aggregates, as proposed previously, but also by binding to partially or fully unfolded states that play key roles in mediating misfolding. These results underline the likely importance of unfolded states as critical intermediates on the prion conversion pathway.


Assuntos
Chaperonas Moleculares/química , Proteínas Priônicas/química , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Pinças Ópticas , Proteínas Priônicas/metabolismo , Ligação Proteica , Análise Espectral , Relação Estrutura-Atividade
2.
Phys Rev E ; 99(5-1): 052122, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212543

RESUMO

We develop a theoretical framework, based on an exclusion process, that is motivated by a biological phenomenon called transcript slippage (TS). In this model a discrete lattice represents a DNA strand while each of the particles that hop on it unidirectionally, from site to site, represents a RNA polymerase (RNAP). While walking like a molecular motor along a DNA track in a step-by-step manner, a RNAP simultaneously synthesizes an RNA chain; in each forward step it elongates the nascent RNA molecule by one unit, using the DNA track also as the template. At some special "slippery" position on the DNA, which we represent as a defect on the lattice, a RNAP can lose its grip on the nascent RNA and the latter's consequent slippage results in a final product that is either longer or shorter than the corresponding DNA template. We develop an exclusion model for RNAP traffic where the kinetics of the system at the defect site captures key features of TS events. We demonstrate the interplay of the crowding of RNAPs and TS. A RNAP has to wait at the defect site for a longer period in more congested RNAP traffic, thereby increasing the likelihood of its suffering a larger number of TS events. The qualitative trends of some of our results for a simple special case of our model are consistent with experimental observations. The general theoretical framework presented here will be useful for guiding future experimental queries and for analysis of the experimental data with more detailed versions of the same model.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Genéticos , DNA/genética , DNA/metabolismo , Cinética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Phys Rev E ; 97(5-1): 052414, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906871

RESUMO

Measurement of the lifetime of attachments formed by a single microtubule (MT) with a single kinetochore (kt) in vitro under force-clamp conditions had earlier revealed a catch-bond-like behavior. In the past, the physical origin of this apparently counterintuitive phenomenon was traced to the nature of the force dependence of the (de)polymerization kinetics of the MTs. Here, first the same model MT-kt attachment is subjected to external tension that increases linearly with time until rupture occurs. In our force-ramp experiments in silico, the model displays the well known "mechanical signatures" of a catch bond probed by molecular force spectroscopy. Exploiting this evidence, we have further strengthened the analogy between MT-kt attachments and common ligand-receptor bonds in spite of the crucial differences in their underlying physical mechanisms. We then extend the formalism to model the stochastic kinetics of an attachment formed by a bundle of multiple parallel microtubules with a single kt considering the effect of rebinding under force-clamp and force-ramp conditions. From numerical studies of the model we predict the trends of variation of the mean lifetime and mean rupture force with the increasing number of MTs in the bundle. Both the mean lifetime and the mean rupture force display nontrivial nonlinear dependence on the maximum number of MTs that can attach simultaneously to the same kt.


Assuntos
Simulação por Computador , Cinetocoros/metabolismo , Fenômenos Mecânicos , Microtúbulos/metabolismo , Fenômenos Biomecânicos , Cinetocoros/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...