Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34283115

RESUMO

In many Internet of Things (IoT) environments, the lifetime of a sensor is linked to its power supply. Sensor devices capture external information and transmit it. They also receive messages with control commands, which means that one of the largest computational overheads of sensor devices is spent on data serialization and deserialization tasks, as well as data transmission. The simpler the serialization/deserialization and the smaller the size of the information to be transmitted, the longer the lifetime of the sensor device and, consequently, the longer the service life. This paper presents a new serialization format (PSON) for these environments, which simplifies the serialization/deserialization tasks and minimizes the messages to be sent/received. The paper presents evaluation results with the most popular serialization formats, demonstrating the improvement obtained with the new PSON format.

2.
Sensors (Basel) ; 19(5)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823643

RESUMO

In the last two decades, data and information fusion has experienced significant development due mainly to advances in sensor technology. The sensors provide a continuous flow of data about the environment in which they are deployed, which is received and processed to build a dynamic estimation of the situation. With current technology, it is relatively simple to deploy a set of sensors in a specific geographic area, in order to have highly sensorized spaces. However, to be able to fusion and process the information coming from the data sources of a highly sensorized space, it is necessary to solve certain problems inherent to this type of technology. The challenge is analogous to what we can find in the field of the Internet of Things (IoT). IoT technology is characterized by providing the infrastructure capacity to capture, store, and process a huge amount of heterogeneous sensor data (in most cases, from different manufacturers), in the same way that it occurs in data fusion applications. This work is not simple, mainly due to the fact that there is no standardization of the technologies involved (especially within the communication protocols used by the connectable sensors). The solutions that we can find today are proprietary solutions that imply an important dependence and a high cost. The aim of this paper is to present a new open source platform with capabilities for the collection, management and analysis of a huge amount of heterogeneous sensor data. In addition, this platform allows the use of hardware-agnostic in a highly scalable and cost-effective manner. This platform is called Thinger.io. One of the main characteristics of Thinger.io is the ability to model sensorized environments through a high level language that allows a simple and easy implementation of data fusion applications, as we will show in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...