Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929455

RESUMO

Bovine in vitro oocyte maturation (IVM) is an easy way to obtain oocytes for subsequent assisted reproductive techniques but is inefficient compared to in vivo maturation. Supplementation of three cytokines, fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1), or FLI, has increased oocyte maturation and embryo development in multiple species, but studies have not explored the oocyte differences caused by FLI IVM supplementation. This study aimed to assess important nuclear and cytoplasmic maturation events in high-quality oocytes. FLI-supplemented oocytes had a decreased GV (3.0% vs. 13.7%, p < 0.01) and increased telophase I incidence (34.6% vs. 17.6%, p < 0.05) after IVM, increased normal meiotic spindles (68.8% vs. 50.0%, p < 0.001), and an increased nuclear maturation rate (75.1% vs. 66.8%, p < 0.001). Moreover, in metaphase II oocytes, the percentage of FLI-treated oocytes with a diffuse mitochondrial distribution was higher (87.7% vs. 77.5%, p < 0.05) and with a cortical mitochondrial distribution was lower (11.6% vs. 17.4%, p < 0.05). Additionally, FLI-supplemented oocytes had more pattern I cortical granules (21.3% vs. 14.4%, p < 0.05). These data suggest that FLI supplementation in bovine in vitro maturation medium coordinates nuclear and cytoplasmic maturation to produce higher-quality oocytes.

2.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37090641

RESUMO

Reprogramming of the gamete into a developmentally competent embryo identity is a fundamental aspect of preimplantation development. One of the most important processes of this reprogramming is the transcriptional awakening during embryonic genome activation (EGA), which robustly occurs in fertilized embryos but is defective in most somatic cell nuclear transfer (SCNT) embryos. However, little is known about the genome-wide underlying chromatin landscape during EGA in SCNT embryos and how it differs from a fertilized embryo. By profiling open chromatin genome-wide in both types of bovine embryos, we find that SCNT embryos fail to reprogram a subset of the EGA gene targets that are normally activated in fertilized embryos. Importantly, a small number of transcription factor (TF) motifs explain most chromatin regions that fail to open in SCNT embryos suggesting that over-expression of a limited number of TFs may provide more robust reprogramming. One such TF, the zygotically-expressed bovine gene DUXC which is a homologue of EGA factors DUX/DUX4 in mouse/human, is alone capable of activating ∻84% of all EGA transcripts that fail to activate normally in SCNT embryos. Additionally, single-cell chromatin profiling revealed low intra-embryo heterogeneity but high inter-embryo heterogeneity in SCNT embryos and an uncoupling of cell division and open chromatin reprogramming during EGA. Surprisingly, our data also indicate that transcriptional defects may arise downstream of promoter chromatin opening in SCNT embryos, suggesting additional mechanistic insights into how and why transcription at EGA is dysregulated. We anticipate that our work will lead to altered SCNT protocols to increase the developmental competency of bovine SCNT embryos.

3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638830

RESUMO

Pluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KdOSKMLN). These biPSCs exhibited silenced transgene expression at passage 10, and had prolonged self-renewal capacity for over 70 passages. The biPSCs have flat, primed-like PSC colony morphology in combined media of knockout serum replacement (KSR) and mTeSR, but switched to dome-shaped, naïve-like PSC colony morphology in mTeSR medium and 2i/LIF with single cell colonization capacity. These cells have comparable proliferation rate to the reported primed- or naïve-state human PSCs, with three-germ layer differentiation capacity and normal karyotype. Transcriptome analysis revealed a high similarity of biPSCs to reported bovine embryonic stem cells (ESCs) and embryos. The naïve-like biPSCs can be incorporated into mouse embryos, with the extended capacity of integration into extra-embryonic tissues. Finally, at least 24.5% cloning efficiency could be obtained in nuclear transfer (NT) experiment using late passage biPSCs as nuclear donors. Our report represents a significant advance in the establishment of bovine PSCs.


Assuntos
Técnicas de Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/biossíntese , Animais , Bovinos , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/citologia , Camundongos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...