Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269201

RESUMO

BackgroundRecent data on immune evasion of new SARS-CoV-2 variants raise concerns about antibody-based COVID-19 therapies. Therefore in this study the in-vitro neutralization capacity against SARS-CoV-2 variants Wuhan D614G, Delta and Omicron in sera of convalescent individuals with and without boost by vaccination was assessed. Methods and FindingsThis in-vitro study included 66 individuals with a history of SARS-CoV-2 infection, divided into subgroups without (n=29) and with SARS-CoV-2 vaccination (n=37). We measured SARS-CoV-2 antibody concentrations by serological assays (anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S) and neutralizing titers against Wuhan D614G, Delta and Omicron in a pseudovirus neutralization assay. Sera of the majority of unvaccinated convalescents did not effectively neutralize Delta and Omicron (4/29, 13.8% and 19/29, 65.5%, resp.). Neutralizing titers against Wuhan D614G, Delta and Omicron were significantly higher in vaccinated compared to unvaccinated convalescents (p<0.0001) with 11.1, 15.3 and 60-fold higher geometric mean of 50%-neutralizing titers (NT50) in vaccinated compared to unvaccinated convalescents. The increase in neutralizing titers was already achieved by one vaccination dose. Neutralizing titers were highest in the first 3 months after vaccination. Concentrations of anti-S antibodies in the serological assays anti-SARS-CoV-2 QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S predict neutralization capacity against Wuhan D614G, Delta and Omicron. While Wuhan D614G was neutralized in-vitro by Bamlanivimab, Casirivimab and Imdevimab, Omicron was resistant to these monoclonal antibodies. ConclusionsThese findings confirm substantial immune evasion of Delta and Omicron which can be overcome by vaccination of convalescents. This informs strategies for choosing of plasma donors in COVID-19 convalescent plasma programs that shall select specifically vaccinated convalescents with very high titers of anti-S antibodies.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-441188

RESUMO

STRUCTURED ABSTRACTHyperinflammation is frequently observed in patients with severe COVID-19. Inadequate and defective IFN type I responses against SARS-CoV-2, associated with autoantibodies in a proportion of patients, lead to severe courses of disease. In addition, hyperactive responses of the humoral immune system have been described. In the current study we investigated a possible role of neutralizing autoantibodies against antiinflammatory mediators. Plasma from adult patients with severe and critical COVID-19 was screened by ELISA for antibodies against PGRN, IL-1-Ra, IL-10, IL-18BP, IL-22BP, IL-36-Ra, CD40, IFN-2, IFN-{gamma}, IFN-{omega} and serpinB1. Autoantibodies were characterized and the antigens were analyzed for immunogenic alterations. In a discovery cohort with severe to critical COVID-19 high titers of PGRN-autoantibodies were detected in 11 of 30 (36.7%), and of IL-1-Ra-autoantibodies in 14 of 30 (46.7%) patients. In a validation cohort of 64 patients with critical COVID-19 high-titer PGRN-Abs were detected in 25 (39%) and IL-1-Ra-Abs in 32 of 64 patients (50%). PGRN-Abs and IL-1-Ra-Abs belonged to IgM and several IgG subclasses. In separate cohorts with non-critical COVID-19, PGRN-Abs and IL-1-Ra-Abs were detected in low frequency (i.e. in < 5% of patients) and at low titers. Neither PGRN-nor IL-1-Ra-Abs were found in 40 healthy controls vaccinated against SARS-CoV-2 or 188 unvaccinated healthy controls. PGRN-Abs were not cross-reactive against SARS-CoV-2 structural proteins nor against IL-1-Ra. Plasma levels of both free PGRN and free IL-1-Ra were significantly decreased in autoantibody-positive patients compared to Ab-negative and non-COVID-19 controls. In vitro PGRN-Abs from patients functionally reduced PGRN-dependent inhibition of TNF- signaling, and IL-1-Ra-Abs from patients reduced IL-1-Ra- or anakinra-dependent inhibition of IL-1{beta} signaling. The pSer81 hyperphosphorylated PGRN isoform was exclusively detected in patients with high-titer PGRN-Abs; likewise, a hyperphosphorylated IL-1-Ra isoform was only found in patients with high-titer IL-1-Ra-Abs. Thr111 was identified as the hyperphophorylated amino acid of IL-1-Ra. In longitudinally collected samples hyperphosphorylated isoforms of both PGRN and IL-1-Ra emerged transiently, and preceded the appearance of autoantibodies. In hospitalized patients, the presence of IL-1-Ra-Abs or IL-1-Ra-Abs in combination with PGRN-Abs was associated with a higher morbidity and mortality. To conclude, neutralizing autoantibodies to IL-1-Ra and PGRN occur in a significant portion of patients with critical COVID-19, with a concomitant decrease in circulating free PGRN and IL-1-Ra, indicative of a misdirected, proinflammatory autoimmune response. The break of self-tolerance is likely caused by atypical hyperphosphorylated isoforms of both antigens, whose appearances precede autoantibody induction. Our data suggest that these immunogenic secondary modifications are induced by the SARS-CoV-2-infection itself or the inflammatory environment evoked by the infection and predispose for a critical course of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...