Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4422, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285219

RESUMO

The eastern North Pacific (ENP) has the highest density of tropical cyclones (TCs) on earth, and yet the controls on TCs, from individual events to seasonal totals, remain poorly understood. One effect that has not been fully considered is the unique geography of the Central American mountains. Although observational studies suggest these mountains can readily fuel individual TCs through dynamical processes, here we show that these mountains indeed play the opposite role on the seasonal timescale, hindering seasonal ENP TC activity by up to 35%. We found that these mountains significantly interrupt the abundant moisture transport from the Caribbean Sea to the ENP, limiting deep convection over the open ocean area where TCs preferentially occur. This study advances our fundamental understanding of ENP TC genesis mechanisms across the weather-to-climate timescales, and also highlights the importance of topography representation in improving the ENP regional climate simulations, as well as TC seasonal predictions and future projections.

2.
Nat Commun ; 12(1): 1268, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627646

RESUMO

Atmospheric rivers (ARs) are responsible for over 90% of poleward water vapor transport in the mid-latitudes and can produce extreme precipitation when making landfall. However, weather and climate models still have difficulty simulating and predicting landfalling ARs and associated extreme precipitation, highlighting the need to better understand AR dynamics. Here, using high-resolution climate models and observations, we demonstrate that mesoscale sea-surface temperature (SST) anomalies along the Kuroshio Extension can exert a remote influence on landfalling ARs and related heavy precipitation along the west coast of North America. Inclusion of mesoscale SST forcing in the simulations results in approximately a 40% increase in landfalling ARs and up to a 30% increase in heavy precipitation in mountainous regions and this remote impact occurs on two-week time scales. The asymmetrical response of the atmosphere to warm vs. cold mesoscale SSTs over the eddy-rich Kuroshio Extension region is proposed as a forcing mechanism that results in a net increase of moisture flux above the planetary boundary layer, prompting AR genesis via enhancing moisture transport into extratropical cyclones in the presence of mesoscale SST forcing.

3.
Nature ; 563(7731): 339-346, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429550

RESUMO

There is no consensus on whether climate change has yet affected the statistics of tropical cyclones, owing to their large natural variability and the limited period of consistent observations. In addition, projections of future tropical cyclone activity are uncertain, because they often rely on coarse-resolution climate models that parameterize convection and hence have difficulty in directly representing tropical cyclones. Here we used convection-permitting regional climate model simulations to investigate whether and how recent destructive tropical cyclones would change if these events had occurred in pre-industrial and in future climates. We found that, relative to pre-industrial conditions, climate change so far has enhanced the average and extreme rainfall of hurricanes Katrina, Irma and Maria, but did not change tropical cyclone wind-speed intensity. In addition, future anthropogenic warming would robustly increase the wind speed and rainfall of 11 of 13 intense tropical cyclones (of 15 events sampled globally). Additional regional climate model simulations suggest that convective parameterization introduces minimal uncertainty into the sign of projected changes in tropical cyclone intensity and rainfall, which allows us to have confidence in projections from global models with parameterized convection and resolution fine enough to include tropical cyclones.


Assuntos
Tempestades Ciclônicas/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Atividades Humanas/estatística & dados numéricos , Clima Tropical , Simulação por Computador , Atividades Humanas/tendências , Probabilidade , Chuva , Incerteza , Vento
4.
Nature ; 558(7708): 36-37, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29872203
5.
Sci Rep ; 7(1): 1658, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490780

RESUMO

Hurricane Patricia in 2015 was the strongest Pacific hurricane to make landfall in Mexico. Although Patricia fortuitously spared major cities, it reminded us of the threat tropical cyclones (TCs) pose in the eastern North Pacific (ENP) and the importance of improving our understanding and prediction of ENP TCs. Patricia's intensity and the active 2015 ENP hurricane season have been partially attributed to the strong El Niño in 2015, however there is still a lack of fundamental understanding of the relationship between El Niño-Southern Oscillation (ENSO) and ENP TCs. Here, we demonstrate that ENSO drives intrabasin variability of ENP TCs, with enhanced (reduced) TC frequency in the western portion of the ENP during El Niño (La Niña), but reduced (enhanced) TC frequency in the eastern nearshore area, where landfalling TCs preferentially form. This intrabasin difference is primarily driven by the Central American Gap Winds (CAGW), which intensify (weaken) during El Niño (La Niña), producing low-level anticyclonic (cyclonic) relative vorticity anomalies and thus an unfavorable (favorable) environment for TC genesis. These findings shed new light on the dynamics linking ENP TC activity to ENSO, and highlight the importance of improving CAGW representation in models to make skillful seasonal forecasts of ENP TCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...