Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338304

RESUMO

In recent decades, considerable attention has been focused on the design and development of surfaces with defined or tunable properties for a wide range of applications and fields. To this end, self-assembled monolayers (SAMs) of organic compounds offer a unique and straightforward route of modifying and engineering the surface properties of any substrate. Thus, alkane-based self-assembled monolayers constitute one of the most extensively studied organic thin-film nanomaterials, which have found wide applications in antifouling surfaces, the control of wettability or cell adhesion, sensors, optical devices, corrosion protection, and organic electronics, among many other applications, some of which have led to their technological transfer to industry. Nevertheless, recently, aromatic-based SAMs have gained importance as functional components, particularly in molecular electronics, bioelectronics, sensors, etc., due to their intrinsic electrical conductivity and optical properties, opening up new perspectives in these fields. However, some key issues affecting device performance still need to be resolved to ensure their full use and access to novel functionalities such as memory, sensors, or active layers in optoelectronic devices. In this context, we will present herein recent advances in π-conjugated systems-based self-assembled monolayers (e.g., push-pull chromophores) as active layers and their applications.

2.
Nanomaterials (Basel) ; 12(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500920

RESUMO

The resolution of a quartz crystal microbalance (QCM) is particularly crucial for gas sensor applications where low concentrations are detected. This resolution can be improved by increasing the effective surface of QCM electrodes and, thereby, enhancing their sensitivity. For this purpose, various researchers have investigated the use of micro-structured materials with promising results. Herein, we propose the use of easy-to-manufacture metal blacks that are highly structured even on a nanoscale level and thus provide more bonding sites for gas analytes. Two different black metals with thicknesses of 280 nm, black aluminum (B-Al) and black gold (B-Au), were deposited onto the sensor surface to improve the sensitivity following the Sauerbrey equation. Both layers present a high surface roughness due to their cauliflower morphology structure. A high response (i.e., resonant frequency shift) of these QCM sensors coated with a black metal layer was obtained. Two gaseous analytes, H2O vapor and EtOH vapor, at different concentrations, are tested, and a distinct improvement of sensitivity is observed for the QCM sensors coated with a black metal layer compared to the blank ones, without strong side effects on resonance frequency stability or mechanical quality factor. An approximately 10 times higher sensitivity to EtOH gas is reported for the QCM coated with a black gold layer compared to the blank QCM sensor.

3.
ACS Sens ; 3(12): 2558-2565, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30431256

RESUMO

It is well-known that the applicability of phthalocyanine chemiresistors suffers from long recovery time after NO2 exposure. This circumstance enforces the necessity to operate the sensors at elevated temperatures (150-200 °C), which shortens the sensor lifetime and increases its power consumption (regardless, a typical measurement period is longer than 15 min). In this paper, we propose a new method for fast and effective recovery by UV-vis illumination at a low temperature (55 °C). The method is based on short illumination following short NO2 exposure. To support and optimize the method, we investigated the effects of light in the wavelength and intensity ranges of 375-850 nm and 0.2-0.8 mW/mm2, respectively, on the rate of NO2 desorption from the phthalocyanine sensitive layer during the recovery period. This investigation was carried out for a set of phthalocyanine materials (ZnPc, CuPc, H2Pc, PbPc, and FePc) operating at slightly elevated temperatures (55-100 °C) and was further supported by the analysis of UV-vis and FTIR spectral changes. We found out that the light with the wavelength shorter than 550 nm significantly accelerates the NO2 desorption from ZnPc, CuPc, and FePc, and allows bringing the measurement period under 2 min and decreasing the sensor power consumption by 75%. Possible mechanisms of the light-stimulated desorption are discussed.


Assuntos
Isoindóis/química , Isoindóis/efeitos da radiação , Luz , Dióxido de Nitrogênio/química , Temperatura
4.
Chem Sci ; 9(18): 4280-4284, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29780559

RESUMO

Groundbreaking research done in the area of nanolithography makes it a versatile tool to produce nanopatterns for a broad range of chemical surface functionalization or physical modifications. We report for the first time an organocatalytic scanning probe nanolithography (o-cSPL) approach. Covalent binding of an organocatalyst on the apex of an atomic force microscope (AFM) tip gives way to a system that allows the formation of locally defined acylated-alcohol patterns on self-assembled monolayers (SAMs). With resolutions comparable to those of other cSPL methods, this first example of o-cSPL holds promise for future applications of bottom-up nanolithography set-ups employing this novel technique.

5.
Langmuir ; 32(16): 4034-42, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27027411

RESUMO

Scanning probe lithography (SPL) appears to be a reliable alternative to the use of masks in traditional lithography techniques as it offers the possibility of directly producing specific chemical functionalities with nanoscale spatial control. We have recently extend the range of applications of catalytic SPL (cSPL) by introducing a homogeneous catalyst immobilized on the apex of a scanning probe. Here we investigate the importance of atomic force microscopy (AFM) physical parameters (applied force, writing speed, and interline distance) on the resultant chemical activity in this cSPL methodology through the direct topographic observation of nanostructured surfaces. Indeed, an alkene-terminated self-assembled monolayer (alkene-SAM) on a silicon wafer was locally epoxidized using a scanning probe tip with a covalently grafted manganese complex bearing the 1,4,7-triazacyclononane macrocycle as the ligand. In a post-transformation process, N-octylpiperazine was covalently grafted to the surface via a selective nucleophilic ring-opening reaction. With this procedure, we could write various patterns on the surface with high spatial control. The catalytic AFM probe thus appears to be very robust because a total area close to 500 µm(2) was patterned without any noticeable loss of catalytic activity. Finally, this methodology allowed us to reach a lower lateral line resolution down to 40 nm, thus being competitive and complementary to the other nanolithographical techniques for the nanostructuration of surfaces.

6.
J Colloid Interface Sci ; 359(1): 47-55, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21492864

RESUMO

In this paper, we studied the influence of solvent on the morphology of zinc protoporphyrin and zinc octacarboxylphthalocyanine films transferred onto gold surface by dipping. In these films, carboxylic acid groups borne in periphery of macrocycles allow anchoring to gold via ionic interaction. First, we followed by UV-Visible absorption spectroscopy the solvation state of these conjugated macrocycles in pure DMF, in pure ethanol and in various ethanol/DMF mixtures. We show that the increase in ethanol proportion promotes interactions between macrocycles. Second, molecular layers of macrocycles spontaneously adsorbed from these various solutions onto gold surface were analyzed by ellipsometry, water contact angle measurements, UV-Visible absorption spectroscopy and atomic force microscopy. Results evidenced the layers were mainly composed of grains whose size of a few nanometers was directly related to the solvation conditions of molecules. In addition, Q band splitting was observed in the absorption spectrum of zinc octacarboxylphthalocyanine grain films which indicates specific organization of those molecules. Therefore solvent is shown to have a profound influence on the nanostructuration of as-prepared macrocycle layers on gold surface by promoting pre-organization in solution, and its composition enables to better control the morphology of those films by tuning the solubilization of macrocycles.


Assuntos
Complexos de Coordenação/química , Ouro/química , Indóis/química , Protoporfirinas/química , Membranas Artificiais , Solventes/química , Propriedades de Superfície
7.
Phys Chem Chem Phys ; 13(7): 2870-9, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21161113

RESUMO

In this work, we have studied the growth of self-assembled monolayers (SAMs) on silicon dioxide (SiO(2)) made of various long alkyltrichlorosilane chains (16, 18, 20, 24, and 30 carbon atoms in the alkyl chain), at several values of temperature (11 and 20 °C in most cases) and relative humidity (18 and 45% RH). Using atomic force microscopy analysis, thickness measurements by ellipsometry, and contact angle measurements, we have built a model of growth behaviour of SAMs of those molecules according to the deposition conditions and the chain length. Particularly, this work brings not only a better knowledge of the less studied growth of triacontyltrichlorosilane (C(30)H(61)SiCl(3)) SAMs but also new results on SAMs of tetracosyltrichlorosilane (C(24)H(49)SiCl(3)) that have not already been studied to our knowledge. We have shown that the SAM growth behaviour of triacontyltrichlorosilane at 20 °C and 45% RH is similar to that obtained at 11 °C and 45% RH for shorter molecules of hexadecyltrichlorosilane (C(16)H(33)SiCl(3)), octadecyltrichlorosilane (C(18)H(37)SiCl(3)), eicosyltrichlorosilane (C(20)H(41)SiCl(3)) and tetracosyltrichlorosilane (C(24)H(49)SiCl(3)). We have also observed that the monolayers grow faster at 45% than at 18% RH, and surprisingly slower at 20 °C than at 11 °C. Another important result is that the growth time constant decreases with the number of carbon atoms in the alkyl chain except for C(24)H(49)SiCl(3) at 11 °C and 18% RH, and for C(30)H(61)SiCl(3). To our knowledge, such a chain length dependence of the growth time constant has never been reported. The latter and all the other results are interpreted by adapting a diffusion limited aggregation growth model.

8.
J Nanosci Nanotechnol ; 11(10): 9310-5, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400342

RESUMO

Formation of self-assembled monolayers (SAM) of 3-aminopropyltrimethoxysilane (APTMS), chemically bonded to silicon dioxide surface, using a new solvent free process, has been studied by contact angle measurements, ellipsometry, ATR-FTIR spectroscopy and AFM imaging. The possibility of using as-obtained APTMS SAMs for anchoring functional molecular moieties is then studied with fullerene C60. In a first part we have analyzed the grafting kinetics of APTMS SAMs in order to control the formation of a single monolayer. Results show that about four hours are needed to obtain a complete APTMS single monolayer. In parallel, the ordering kinetics of the SAM has been monitored by ATR-FTIR spectroscopy, showing that the monolayer reaches its final order before grafting. We show that those APTMS SAMs can be used to graft C60 molecules deposited from a solution and forming about one monolayer anchored on amine terminal moieties. Such results could help paving the way to the preparation of hybrid C60-based molecular devices on silicon through a bottom-up approach.

9.
Langmuir ; 26(22): 17111-8, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20968285

RESUMO

In this paper, we first present the study of the formation of phenyltrichlorosilane film and self-assembled monolayers of phenylalkyltrichlorosilane (PATCl), pentafluoro-phenylalkyltrichlorosilane (PFATCl), and a mixture of the two, on silicon covered by its native oxide. These monolayers are shown to grow in two steps with characteristic time constants. The first step is characterized by a similar time constant of growth for all the studied trichlorosilane molecules and attributed to chemisorption. The second step corresponds to the arrangement between molecules, accelerated by the presence of the short alkyl chain (3-4 carbon atoms), and by mixing phenyl and pentafluoro-phenyl terminal moieties, which is accounted for by hydrogen bonding CH···FC and/or attractive quadrupolar interactions within a face-to-face phenyl/pentafluoro-phenyl alternating stack arrangement. Such results should allow improvement of intermolecular stacking within conjugated molecular domains, which is particularly important for molecular electronic devices. In the second part, we studied how PATCl, PFATCl, and their mixture phase separate with octadecyltrichlorosilane (OTS) molecules in various ratios. The way to improve phase separation was studied modifying aromatic ring to ring as well as aromatic-aliphatic interactions. OTS island size and coverage are shown to be smaller with the aromatic phase that involves stronger ring to ring interactions, i.e., attractive interactions between the phenyl species by mixing phenyl and pentafluoro-phenyl rings. The best phase separation is obtained with PFATCl as the aromatic molecule. If nanoislands of aromatic molecules could not be observed in these experiments, we show that they are attainable by mixing OTS and aromatic small organotriethoxysilanes whose grafting kinetics is slower. These results pave the way to the control improvement of the composition and nanostructuration of SAMs, essential for their further use within molecular devices.

10.
Nano Lett ; 5(4): 783-5, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15826128

RESUMO

A systematic study of the relationship between the molecular structure of a series of thiol end-capped oligo-phenylenevinylenes (OPVs) and the coherent electronic transmission at the single molecule level was measured by scanning tunneling microscopy (STM). This reveals a significant change in the electronic transparency of various OPV derivatives due to the insertion of a methylene spacer group or due to nitro group substitution. Apparently, changes in the conjugation path through the central benzene ring from para to meta substitution does not have a profound effect on the electronic transparency of the molecules.

11.
Langmuir ; 20(26): 11577-82, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15595786

RESUMO

Self-assembly of aliphatic as well as aromatic thiol-terminated molecules was achieved onto a variety of gold surfaces using aqueous micellar solutions. Scanning tunneling microscopy experiments allowed us to demonstrate that the increase in the density of self-assembled monolayers (SAMs) prepared from micellar aqueous solvent compared to that prepared from ethanol directly originates from the decrease in defect density in the SAM (etch pits, domain boundaries) and not from a denser local packing of the molecules. Extending the use of such an aqueous solvent to various conjugated molecules, we report for the first time the insertion of these molecules from an aqueous solution in a dodecanethiol (DT) SAM and the ligand-exchange on the surface of DT stabilized gold nanoparticles deposited as a Langmuir-Blodgett film. Finally, we show that aqueous micellar DT solutions allow the preparation of DT SAMs on gold through a micropatterned resist mask. These results make possible the use of water to deliver molecules on a solid substrate to build molecular devices in a way compatible with lithography requirements in microelectronic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...