Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 27(5): 1315-1325, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114363

RESUMO

Solubility is a key physicochemical property for the success of any drug candidate. Although the methods used and their rationales for determining solubility are subject to project needs and stages along the drug discovery-drug development pipeline, an artificial boundary can exist at the discovery-development interface. This boundary results in less effective solubility knowledge sharing and data integration among scientists in both drug discovery and drug development. Herein, we present a refreshed perspective on solubility. Solubility experimentation is not a one-size-fits-all measurement; instead, we stress the importance of constructing a seamless solubility understanding of a molecule as it progresses from a new chemical entity into a drug product.


Assuntos
Desenvolvimento de Medicamentos , Descoberta de Drogas , Desenho de Fármacos , Preparações Farmacêuticas , Solubilidade
2.
J Phys Chem A ; 124(11): 2279-2287, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32091900

RESUMO

The anion photoelectron imaging spectra of an ion with m/z 85, generated under ion source conditions that optimize •OH production in a coexpansion with isoprene, are presented and analyzed with supporting calculations. A spectroscopic feature observed at a vertical electron detachment energy of 2.45 eV, which dominates the photoelectron spectrum measured at 3.495 eV photon energy, is consistent with the OH-·isoprene ion-molecule complex, while additional signal observed at lower electron binding energy can be attributed to other constitutional isomers. However, spectra measured over a 2.2-2.6 eV photon energy range, i.e., from near threshold of the predominant OH-·isoprene detachment feature through the vertical detachment energy, exhibit sharp features with common electron kinetic energies, suggesting autodetachment from a temporary anion prepared by photoexcitation. The photon energy independence of the electron kinetic energy of these features along with the low dipole moment predicted for the neutral •OH·isoprene van der Waals complex, suggest a complex photon-driven process. We present calculations supporting a hypothesis that near-threshold production of the •OH···isoprene reactive complex results in hydrogen abstraction of the isoprene molecule. The newly formed activated complex anion supports a dipole bound state that temporarily traps the near zero-kinetic energy electron and then autodetaches, encoding the low-frequency modes of the dehydrogenated neutral isoprene radical in the electron kinetic energies.

3.
J Chem Phys ; 150(3): 034302, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30660161

RESUMO

Photoelectron imaging spectra of three alkenoxide radical anions (3-buten-1-oxide, 3-buten-2-oxide, and 2-propenoxide) are presented and analyzed with supporting results of density functional theory calculations. In all spectra, intense detachment features are observed at approximately 2 eV electron binding energy, which is similar to the electron affinities of saturated neutral alkoxy radicals [Ramond et al., J. Chem. Phys. 112, 1158 (2000)]. Photoelectron angular distributions suggest the presence of several overlapping transitions which are assigned to the X̃ and à states of multiple energetically competitive conformers. The term energy of the à state of the 2-propenoxy radical, 0.17 eV, is higher than that of 3-buten-2-oxy (0.13 eV) and 3-buten-1-oxy (0.05 eV) radicals. Comparing the butenoxy radicals, we infer that stronger interactions between the non-bonding O 2p orbitals and the π bond increase the splitting between the ground and the first excited state in the 3-buten-2-oxy radical relative to the 3-buten-1-oxy radical.

4.
J Phys Chem A ; 121(29): 5459-5467, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28671848

RESUMO

Anion photoelectron imaging was used to measure the photodetachment spectra of molecular complexes formed between O2- and a range of atmospherically relevant polar molecules, including species with a carbonyl group (acetone, formaldehyde) and alcohols (ethanol, propenol, butenol). Experimental spectra are analyzed using a combination of Franck-Condon simulations and electronic structure calculations. Strong charge-dipole interactions and H-bonding stabilize the complex anions relative to the neutrals, resulting in a ca. 1 eV increase in electron binding energy relative to bare O2-, an effect more pronounced in complexes with H-bonding. In addition, broken degeneracy of the O2-local πg orbitals in the complexes results in the stabilization of the low-lying excited O2 (a 1Δg)·[polar VOC] state relative to the ground O2 (X 3Σg-)·[polar VOC] state when compared to bare O2. The spectra of the O2-·[polar VOC] complexes exhibit less pronounced laser photoelectron angular distribution (PADs). The spectrum of O2-·formaldehyde is unique in terms of both spectral profile and PAD. On the basis of these experimental results in addition to computational results, the complex anion cannot be described as a distinct O2- anion partnered with an innocent solvent molecule; the molecules are more strongly coupled through charge delocalization. Overall, the results underscore how the symmetry of the O2 πg orbitals is broken by different polar partners, which may have implications for atmospheric photochemistry and models of solar radiation absorption that include collision-induced absorption.

5.
J Phys Chem A ; 120(40): 7828-7838, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27648607

RESUMO

The anion photoelectron imaging spectra of O2-·VOC and O4-·VOC (VOC = hexane, isoprene, benzene, and benzene-d6) complexes measured using 3.49 eV photon energy, along with the results of ab initio and density functional theory results are reported and analyzed. Photodetachment of these anionic complexes accesses neutrals that model collision complexes, offering a probe of the effects of symmetry-breaking collision events on the electronic structure of normally transparent neutral molecules. The energies of O2-·VOC spectral features compared to the bare O2- indicate that photodetachment of the anion accesses a modestly repulsive region of the O2-VOC potential energy surface, with subtle VOC dependence on the relative energies of the O2 (X 3Σg-)·VOC ground state and O2 (a 1Δg)·VOC excited state. In contrast, a significantly higher intensity of the transition to the O2 (a 1Δg)·VOC excited state relative to the O2 (X 3Σg-)·VOC ground state is observed for VOC = benzene, with a less pronounced effect observed for VOC = isoprene. Similar spectral effects are observed in the O4-·benzene and O4-·isoprene PE spectra. Several explanations are considered, with involvement of a temporary anion state emerging as the most plausible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...