Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
South Med J ; 117(2): 67-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307500

RESUMO

Without rural hospitals, many patients may not have access to essential services, or even any health care. Rural hospitals provide a community hub for local access to primary care and emergency services, as well as a bridge to specialized care outside the community. The goal of this review was to demonstrate how the University of Arkansas for Medical Sciences supports and empowers rural hospitals through an alliance that provides cost savings through clinical networks, collaborative purchasing, and leveraged services; workforce recruitment and education; telemedicine and distance learning; community outreach; and access to best practices, resources, and tools for hospital transformation. Born out of grassroots efforts in the rural US South, this model alliance, the Arkansas Rural Health Partnership, with the University of Arkansas for Medical Sciences supporting as an academic medical center participant, offers resources and programs intended to help rural hospitals and healthcare providers survive and even thrive in the challenging landscape that is forcing many other rural hospitals to close. The Arkansas Rural Health Partnership model is relevant for rural states that are seeking to develop or reenvision rural hospital alliances with academic medical centers to the benefit of the hospitals and the health of their communities and state.


Assuntos
Serviços de Saúde Rural , Telemedicina , Humanos , Hospitais Rurais , Atenção à Saúde , Saúde da População Rural , Arkansas , População Rural
2.
Nat Metab ; 5(8): 1382-1394, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443356

RESUMO

Chronic inflammation is associated with increased risk and poor prognosis of heart failure; however, the precise mechanism that provokes sustained inflammation in the failing heart remains elusive. Here we report that depletion of carnitine acetyltransferase (CRAT) promotes cholesterol catabolism through bile acid synthesis pathway in cardiomyocytes. Intracellular accumulation of bile acid or intermediate, 7α-hydroxyl-3-oxo-4-cholestenoic acid, induces mitochondrial DNA stress and triggers cGAS-STING-dependent type I interferon responses. Furthermore, type I interferon responses elicited by CRAT deficiency substantially increase AIM2 expression and AIM2-dependent inflammasome activation. Genetic deletion of cardiomyocyte CRAT in mice of both sexes results in myocardial inflammation and dilated cardiomyopathy, which can be reversed by combined depletion of caspase-1, cGAS or AIM2. Collectively, we identify a mechanism by which cardiac energy metabolism, cholesterol homeostasis and cardiomyocyte-intrinsic innate immune responses are interconnected via a CRAT-mediated bile acid synthesis pathway, which contributes to chronic myocardial inflammation and heart failure progression.


Assuntos
Carnitina O-Acetiltransferase , Insuficiência Cardíaca , Animais , Feminino , Masculino , Camundongos , Carnitina O-Acetiltransferase/genética , Carnitina O-Acetiltransferase/metabolismo , Colesterol , Imunidade Inata , Inflamação , Interferon Tipo I , Nucleotidiltransferases/metabolismo
3.
J Am Coll Cardiol ; 80(11): 1113, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36075683
5.
J Biol Chem ; 294(50): 19236-19245, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31619515

RESUMO

Monogenetic disorders that cause cerebellar ataxia are characterized by defects in gait and atrophy of the cerebellum; however, patients often suffer from a spectrum of disease, complicating treatment options. Spinocerebellar ataxia autosomal recessive 16 (SCAR16) is caused by coding mutations in STUB1, a gene that encodes the multifunctional enzyme CHIP (C terminus of HSC70-interacting protein). The disease spectrum of SCAR16 includes a varying age of disease onset, cognitive dysfunction, increased tendon reflex, and hypogonadism. Although SCAR16 mutations span the multiple functional domains of CHIP, it is unclear whether the location of the mutation and the change in the biochemical properties of CHIP contributes to the clinical spectrum of SCAR16. In this study, we examined relationships between the clinical phenotypes of SCAR16 patients and the changes in biophysical, biochemical, and functional properties of the corresponding mutated protein. We found that the severity of ataxia did not correlate with age of onset; however, cognitive dysfunction, increased tendon reflex, and ancestry were able to predict 54% of the variation in ataxia severity. We further identified domain-specific relationships between biochemical changes in CHIP and clinical phenotypes and specific biochemical activities that associate selectively with either increased tendon reflex or cognitive dysfunction, suggesting that specific changes to CHIP-HSC70 dynamics contribute to the clinical spectrum of SCAR16. Finally, linear models of SCAR16 as a function of the biochemical properties of CHIP support the concept that further inhibiting mutant CHIP activity lessens disease severity and may be useful in the design of patient-specific targeted approaches to treat SCAR16.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Ataxias Espinocerebelares/metabolismo , Proteínas de Choque Térmico HSC70/genética , Humanos , Método de Monte Carlo , Análise Multivariada , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Ataxias Espinocerebelares/genética
6.
Circulation ; 138(22): 2569-2575, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30571349

RESUMO

Artificial intelligence offers the potential for transformational advancement in cardiovascular care delivery, yet practical applications of this technology have yet to be embedded in clinical workflows and systems. Recent advances in machine learning algorithms and accessibility to big data sources have created the ability for software to solve highly specialized problems outside of health care, such as autonomous driving, speech recognition, and game playing (chess and Go), at superhuman efficiency previously not thought possible. To date, high-order cognitive problems in cardiovascular research such as differential diagnosis, treatment options, and clinical risk stratification have been difficult to address at scale with artificial intelligence. The practical application of artificial intelligence in the underlying operational processes in the delivery of cardiac care may be more amenable where adoption has great potential to fundamentally transform care delivery while maintaining the core quality and service that our patients demand. In this article, we provide an overview on how these artificial intelligence platforms can be implemented to improve the operational delivery of care for patients with cardiovascular disease.


Assuntos
Atenção à Saúde/métodos , Aprendizado de Máquina , Algoritmos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/terapia , Humanos , Imageamento por Ressonância Magnética
7.
PLoS One ; 13(11): e0207504, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30496196

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0139209.].

8.
Circ Res ; 123(4): 477-494, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30355249

RESUMO

Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.


Assuntos
Endotélio Vascular/metabolismo , Metabolismo Energético , Homeostase , Doenças Metabólicas/etiologia , Animais , Humanos
9.
Am J Physiol Cell Physiol ; 315(6): C830-C838, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257106

RESUMO

Hyperphosphatemia, the elevated level of inorganic phosphate (Pi) in serum, is associated with increased cardiovascular morbidities and mortality. The effects of high Pi on endothelial cells are not well studied. This study investigated high Pi-induced endothelial cell apoptosis and the role of microRNA-21. Mouse myocardial endothelial cells (MEC) were cultured in normal (1 mM) and high (5 mM) Pi conditions. Apoptosis was detected by TUNEL staining and flow cytometry. MicroRNA profiles of MEC response to changes in Pi concentration were obtained using gene expression arrays. Expression levels of the microRNA-21 target genes, programmed cell death gene 4 ( PDCD4), poly(ADP-ribose) polymerase ( PARP), and phosphatase and tensin homolog ( PTEN), as well as NF-κB were measured by Western blotting and RT-PCR. MicroRNA-21-specific inhibitors and mimics were used to study effects of microRNA-21 on MEC apoptosis and gene expression regulations. High Pi induced MEC apoptosis and upregulated microRNA-21 expression. MicroRNA-21-specific mimics reproduced high Pi-induced apoptosis in normal Pi medium, and microRNA-21 inhibitors ameliorated the high Pi induction of apoptosis, suggesting that microRNA-21 mediated high Pi-induced MEC apoptosis. The microRNA-21 targets PDCD4, PTEN, PARP, and NF-κB were significantly downregulated in high Pi conditions. High Pi-induced downregulation of PDCD4 was abolished by microRNA-21 inhibitors and selective ERK inhibitor (selumetinib) and was reproduced by microRNA-21 mimics. Inhibitors and mimics of microRNA-21 did not have effects on high Pi-induced NF-κB downregulation. Selumetinib blocked high Pi-induced NF-κB downregulation. MicroRNA-21 mediates high Pi-induced endothelial cell apoptosis, which involves an ERK1/2/microRNA-21/PDCD4 pathway. High Pi-induced downregulation of NF-κB expression is mediated by an ERK1/2 signaling-dependent but microRNA-21-independent mechanism.


Assuntos
Proteínas Reguladoras de Apoptose/genética , MicroRNAs/genética , Miocárdio/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Proteínas de Ligação a RNA/genética , Animais , Apoptose/genética , Benzimidazóis/administração & dosagem , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Hiperfosfatemia/sangue , Hiperfosfatemia/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Miocárdio/patologia , NF-kappa B/genética , PTEN Fosfo-Hidrolase/genética , Fosfatos/sangue
10.
PLoS Genet ; 14(9): e1007664, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222779

RESUMO

CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as an active member of the cellular protein quality control system given the ability of CHIP to function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding mutation that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using multiple biophysical and cellular approaches, we demonstrated that T246M mutation results in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomerization, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity, but maintains interactions with chaperones and chaperone-related functions. To establish preclinical models of SCAR16, we engineered T246M at the endogenous locus in both mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the concept that disease-causing CHIP mutations have different biophysical and functional repercussions on CHIP function that may directly correlate to the spectrum of clinical phenotypes observed in SCAR16 patients. Our findings both further expand our basic understanding of CHIP biology and provide meaningful mechanistic insight underlying the molecular drivers of SCAR16 disease pathology, which may be used to inform the development of novel therapeutics for this devastating disease.


Assuntos
Cognição , Atividade Motora/genética , Domínios Proteicos/genética , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases/genética , Animais , Comportamento Animal , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fenótipo , Mutação Puntual , Multimerização Proteica/genética , Ratos , Ratos Sprague-Dawley , Ataxias Espinocerebelares/congênito , Ubiquitina-Proteína Ligases/metabolismo
11.
Metabolomics ; 14(1): 8, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30104954

RESUMO

Introduction: The effects of exercise on the heart and its resistance to disease are well-documented. Recent studies have identified that exercise-induced resistance to arrhythmia is due to the preservation of mitochondrial membrane potential. Objectives: To identify novel metabolic changes that occur parallel to these mitochondrial alterations, we performed non-targeted metabolomics analysis on hearts from sedentary and exercise-trained rats challenged with isolated heart ischemia-reperfusion injury (I/R). Methods: Eight-week old Sprague-Dawley rats were treadmill trained 5 days/week for 6 weeks (exercise duration and intensity progressively increased to 1 h at 30 m/min up a 10.5% incline, 75-80% VO2max). The recovery of pre-ischemic function for sedentary rat hearts was 28.8 ± 5.4% (N = 12) compared to exercise trained hearts, which recovered 51.9% ± 5.7 (N = 14) (p < 0.001). Results: Non-targeted GC-MS metabolomics analysis of (1) sedentary rat hearts; (2) exercise-trained rat hearts; (3) sedentary rat hearts challenged with global ischemia-reperfusion (I/R) injury; and (4) exercise-trained rat hearts challenged with global I/R (10/group) revealed 15 statistically significant metabolites between groups by ANOVA using Metaboanalyst (p < 0.001). Enrichment analysis of these metabolites for pathway-associated metabolic sets indicated a > 10-fold enrichment for ammonia recycling and protein biosynthesis. Subsequent comparison of the sedentary hearts post-I/R and exercise-trained hearts post-I/R further identified significant differences in three metabolites (oleic acid, pantothenic acid, and campesterol) related to pantothenate and CoA biosynthesis (p ≤ 1.24E-05, FDR ≤ 5.07E-4). Conclusions: These studies shed light on novel mechanisms in which exercise-induced cardioprotection occurs in I/R that complement both the mitochondrial stabilization and antioxidant mechanisms recently described. These findings also link protein synthesis and protein degradation (protein quality control mechanisms) with exercise-linked cardioprotection and mitochondrial susceptibility for the first time in cardiac I/R.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Doença da Artéria Coronariana/metabolismo , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas/métodos , Coração/fisiopatologia , Isquemia/metabolismo , Masculino , Metaboloma/fisiologia , Metabolômica/métodos , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Reperfusão Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Sprague-Dawley , Comportamento Sedentário
12.
J Cardiovasc Dev Dis ; 5(3)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111698

RESUMO

We previously reported how the loss of CHIP expression (Carboxyl terminus of Hsc70-Interacting Protein) during pressure overload resulted in robust cardiac dysfunction, which was accompanied by a failure to maintain ATP levels in the face of increased energy demand. In this study, we analyzed the cardiac metabolome after seven days of pressure overload and found an increase in long-chain and medium-chain fatty acid metabolites in wild-type hearts. This response was attenuated in mice that lack expression of CHIP (CHIP-/-). These findings suggest that CHIP may play an essential role in regulating oxidative metabolism pathways that are regulated, in part, by the nuclear receptor PPARα (Peroxisome Proliferator-Activated Receptor alpha). Next, we challenged CHIP-/- mice with the PPARα agonist called fenofibrate. We found that treating CHIP-/- mice with fenofibrate for five weeks under non-pressure overload conditions resulted in decreased skeletal muscle mass, compared to wild-type mice, and a marked increase in cardiac fibrosis accompanied by a decrease in cardiac function. Fenofibrate resulted in decreased mitochondrial cristae density in CHIP-/- hearts as well as decreased expression of genes involved in the initiation of autophagy and mitophagy, which suggests that a metabolic challenge, in the absence of CHIP expression, impacts pathways that contribute to mitochondrial quality control. In conclusion, in the absence of functional CHIP expression, fenofibrate results in unexpected skeletal muscle and cardiac pathologies. These findings are particularly relevant to patients harboring loss-of-function mutations in CHIP and are consistent with a prominent role for CHIP in regulating cardiac metabolism.

13.
Am J Pathol ; 188(7): 1676-1692, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29758183

RESUMO

The muscle-specific ubiquitin ligase atrogin-1 (MAFbx) has been identified as a critical regulator of pathologic and physiological cardiac hypertrophy; it regulates these processes by ubiquitinating transcription factors [nuclear factor of activated T-cells and forkhead box O (FoxO) 1/3]. However, the role of atrogin-1 in regulating transcription factors in aging has not previously been described. Atrogin-1 cardiomyocyte-specific transgenic (Tg+) adult mice (α-major histocompatibility complex promoter driven) have normal cardiac function and size. Herein, we demonstrate that 18-month-old atrogin-1 Tg+ hearts exhibit significantly increased anterior wall thickness without functional impairment versus wild-type mice. Histologic analysis at 18 months revealed atrogin-1 Tg+ mice had significantly less fibrosis and significantly greater nuclei and cardiomyocyte cross-sectional analysis. Furthermore, by real-time quantitative PCR, atrogin-1 Tg+ had increased Col 6a4, 6a5, 6a6, matrix metalloproteinase 8 (Mmp8), and Mmp9 mRNA, suggesting a role for atrogin-1 in regulating collagen deposits and MMP-8 and MMP-9. Because atrogin-1 Tg+ mice exhibited significantly less collagen deposition and protein levels, enhanced Mmp8 and Mmp9 mRNA may offer one mechanism by which collagen levels are kept in check in the aged atrogin-1 Tg+ heart. In addition, atrogin-1 Tg+ hearts showed enhanced FoxO1/3 activity. The present study shows a novel link between atrogin-1-mediated regulation of FoxO1/3 activity and reduced collagen deposition and fibrosis in the aged heart. Therefore, targeting FoxO1/3 activity via the muscle-specific atrogin-1 ubiquitin ligase may offer a muscle-specific method to modulate aging-related cardiac fibrosis.


Assuntos
Envelhecimento , Cardiomegalia/prevenção & controle , Fenômenos Fisiológicos Cardiovasculares , Fibrose/prevenção & controle , Proteínas Musculares/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Estudos Transversais , Fibrose/etiologia , Fibrose/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais
14.
J Pers Med ; 8(2)2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29710874

RESUMO

As part of the Heart Healthy Lenoir Project, we developed a practice level intervention to improve blood pressure control. The goal of this study was: (i) to determine if single nucleotide polymorphisms (SNPs) that associate with blood pressure variation, identified in large studies, are applicable to blood pressure control in subjects from a rural population; (ii) to measure the association of these SNPs with subjects' responsiveness to the hypertension intervention; and (iii) to identify other SNPs that may help understand patient-specific responses to an intervention. We used a combination of candidate SNPs and genome-wide analyses to test associations with either baseline systolic blood pressure (SBP) or change in systolic blood pressure one year after the intervention in two genetically defined ancestral groups: African Americans (AA) and Caucasian Americans (CAU). Of the 48 candidate SNPs, 13 SNPs associated with baseline SBP in our study; however, one candidate SNP, rs592582, also associated with a change in SBP after one year. Using our study data, we identified 4 and 15 additional loci that associated with a change in SBP in the AA and CAU groups, respectively. Our analysis of gene-age interactions identified genotypes associated with SBP improvement within different age groups of our populations. Moreover, our integrative analysis identified AQP4-AS1 and PADI2 as genes whose expression levels may contribute to the pleiotropy of complex traits involved in cardiovascular health and blood pressure regulation in response to an intervention targeting hypertension. In conclusion, the identification of SNPs associated with the success of a hypertension treatment intervention suggests that genetic factors in combination with age may contribute to an individual's success in lowering SBP. If these findings prove to be applicable to other populations, the use of this genetic variation in making patient-specific interventions may help providers with making decisions to improve patient outcomes. Further investigation is required to determine the role of this genetic variance with respect to the management of hypertension such that more precise treatment recommendations may be made in the future as part of personalized medicine.

15.
G3 (Bethesda) ; 8(6): 2107-2119, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29686110

RESUMO

Although vegetable consumption associates with decreased risk for a variety of diseases, few Americans meet dietary recommendations for vegetable intake. TAS2R38 encodes a taste receptor that confers bitter taste sensing from chemicals found in some vegetables. Common polymorphisms in TAS2R38 lead to coding substitutions that alter receptor function and result in the loss of bitter taste perception. Our study examined whether bitter taste perception TAS2R38 diplotypes associated with vegetable consumption in participants enrolled in either an enhanced or a minimal nutrition counseling intervention. DNA was isolated from the peripheral blood cells of study participants (N = 497) and analyzed for polymorphisms. Vegetable consumption was determined using the Block Fruit and Vegetable screener. We tested for differences in the frequency of vegetable consumption between intervention and genotype groups over time using mixed effects models. Baseline vegetable consumption frequency did not associate with bitter taste diplotypes (P = 0.937), however after six months of the intervention, we observed an interaction between bitter taste diplotypes and time (P = 0.046). Participants in the enhanced intervention increased their vegetable consumption frequency (P = 0.020) and within this intervention group, the bitter non-tasters and intermediate-bitter tasters had the largest increase in vegetable consumption. In contrast, in the minimal intervention group, the bitter tasting participants reported a decrease in vegetable consumption. Bitter-non tasters and intermediate-bitter tasters increased vegetable consumption in either intervention more than those who perceive bitterness. Future precision medicine applications could consider genetic variation in bitter taste perception genes when designing dietary interventions.


Assuntos
Dieta , Predisposição Genética para Doença , Receptores Acoplados a Proteínas G/genética , Características de Residência , Paladar/genética , Verduras , Adolescente , Adulto , Idoso , Estudos de Coortes , Demografia , Feminino , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Regressão , Percepção Gustatória/genética , Adulto Jovem
16.
FEBS J ; 285(8): 1419-1436, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29473997

RESUMO

The bone morphogenetic protein (BMP) signaling pathway plays a central role during vasculature development. Mutations or dysregulation of the BMP pathway members have been linked to arteriovenous malformations. In the present study, we investigated the effect of the BMP modulators bone morphogenetic protein endothelial precursor-derived regulator (BMPER) and twisted gastrulation protein homolog 1 (TWSG1) on arteriovenous specification during zebrafish development and analyzed downstream Notch signaling pathway in human endothelial cells. Silencing of bmper and twsg1b in zebrafish embryos by morpholinos resulted in a pronounced enhancement of venous ephrinB4a marker expression and concomitant dysregulated arterial ephrinb2a marker expression detected by in situ hybridization. As arteriovenous specification was disturbed, we assessed the impact of BMPER and TWSG1 protein stimulation on the Notch signaling pathway on endothelial cells from different origin. Quantitative real-time PCR (qRT-PCR) and western blot analysis showed increased expression of Notch target gene hairy and enhancer of split, HEY1/2 and EPHRINB2. Consistently, silencing of BMPER in endothelial cells by siRNAs decreased Notch signaling and downstream effectors. BMP receptor antagonist DMH1 abolished BMPER and BMP4 induced Notch signaling pathway activation. In conclusion, we found that in endothelial cells, BMPER and TWSG1 are necessary for regular Notch signaling activity and in zebrafish embryos BMPER and TWSG1 preserve arteriovenous specification to prevent malformations.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Proteínas de Transporte/genética , Células Endoteliais/metabolismo , Neovascularização Fisiológica/genética , Receptores Notch/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Interferência de RNA , Receptores Notch/metabolismo , Transdução de Sinais/genética , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
J Am Soc Nephrol ; 29(3): 936-948, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242247

RESUMO

The importance of the kidney distal convoluted tubule (DCT) and cortical collecting duct (CCD) is highlighted by various water and electrolyte disorders that arise when the unique transport properties of these segments are disturbed. Despite this critical role, little is known about which proteins have a regulatory role in these cells and how these cells can be regulated by individual physiologic stimuli. By combining proteomics, bioinformatics, and cell biology approaches, we found that the E3 ubiquitin ligase CHIP is highly expressed throughout the collecting duct; is modulated in abundance by vasopressin; interacts with aquaporin-2 (AQP2), Hsp70, and Hsc70; and can directly ubiquitylate the water channel AQP2 in vitro shRNA knockdown of CHIP in CCD cells increased AQP2 protein t1/2 and reduced AQP2 ubiquitylation, resulting in greater levels of AQP2 and phosphorylated AQP2. CHIP knockdown increased the plasma membrane abundance of AQP2 in these cells. Compared with wild-type controls, CHIP knockout mice or novel CRISPR/Cas9 mice without CHIP E3 ligase activity had greater AQP2 abundance and altered renal water handling, with decreased water intake and urine volume, alongside higher urine osmolality. We did not observe significant changes in other water- or sodium-transporting proteins in the gene-modified mice. In summary, these results suggest that CHIP regulates AQP2 and subsequently, renal water handling.


Assuntos
Aquaporina 2/metabolismo , Homeostase/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Água/metabolismo , Animais , Células Cultivadas , Ontologia Genética , Inativação Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos , Proteômica , Ubiquitinação
18.
Am J Pathol ; 187(12): 2895-2911, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29153655

RESUMO

Our goal was to measure the association of CXCL5 and molecular phenotypes associated with coronary atherosclerosis severity in patients at least 65 years old. CXCL5 is classically defined as a proinflammatory chemokine, but its role in chronic inflammatory diseases, such as coronary atherosclerosis, is not well defined. We enrolled individuals who were at least 65 years old and undergoing diagnostic cardiac catheterization. Coronary artery disease (CAD) severity was quantified in each subject via coronary angiography by calculating a CAD score. Circulating CXCL5 levels were measured from plasma, and both DNA genotyping and mRNA expression levels in peripheral blood mononuclear cells were quantified via microarray gene chips. We observed a negative association of CXCL5 levels with CAD at an odds ratio (OR) of 0.46 (95% CI, 0.27-0.75). Controlling for covariates, including sex, statin use, hypertension, hyperlipidemia, obesity, self-reported race, smoking, and diabetes, the OR was not significantly affected [OR, 0.54 (95% CI, 0.31-0.96)], consistent with a protective role for CXCL5 in coronary atherosclerosis. We also identified 18 genomic regions with expression quantitative trait loci of genes correlated with both CAD severity and circulating CXCL5 levels. Our clinical findings are consistent with the emerging link between chemokines and atherosclerosis and suggest new therapeutic targets for CAD.


Assuntos
Quimiocina CXCL5/sangue , Doença da Artéria Coronariana/sangue , Idoso , Quimiocina CXCL5/genética , Doença da Artéria Coronariana/genética , Feminino , Humanos , Masculino
19.
Br J Pharmacol ; 174(24): 4797-4811, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28977680

RESUMO

BACKGROUND AND PURPOSE: The human kinome consists of roughly 500 kinases, including 150 that have been proposed as therapeutic targets. Protein kinases regulate an array of signalling pathways that control metabolism, cell cycle progression, cell death, differentiation and survival. It is not surprising, then, that new kinase inhibitors developed to treat cancer, including sorafenib, also exhibit cardiotoxicity. We hypothesized that sorafenib cardiotoxicity is related to its deleterious effects on specific cardiac metabolic pathways given the critical roles of protein kinases in cardiac metabolism. EXPERIMENTAL APPROACH: FVB/N mice (10 per group) were challenged with sorafenib or vehicle control daily for 2 weeks. Echocardiographic assessment of the heart identified systolic dysfunction consistent with cardiotoxicity in sorafenib-treated mice compared to vehicle-treated controls. Heart, skeletal muscle, liver and plasma were flash frozen and prepped for non-targeted GC-MS metabolomics analysis. KEY RESULTS: Compared to vehicle-treated controls, sorafenib-treated hearts exhibited significant alterations in 11 metabolites, including markedly altered taurine/hypotaurine metabolism (25-fold enrichment), identified by pathway enrichment analysis. CONCLUSIONS AND IMPLICATIONS: These studies identified alterations in taurine/hypotaurine metabolism in the hearts and skeletal muscles of mice treated with sorafenib. Interventions that rescue or prevent these sorafenib-induced changes, such as taurine supplementation, may be helpful in attenuating sorafenib-induced cardiac injury.


Assuntos
Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metabolômica , Músculo Esquelético/efeitos dos fármacos , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Plasma/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos , Músculo Esquelético/metabolismo , Niacinamida/química , Niacinamida/farmacologia , Compostos de Fenilureia/química , Plasma/metabolismo , Inibidores de Proteínas Quinases/química , Sorafenibe , Distribuição Tecidual
20.
Metabolites ; 7(3)2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786928

RESUMO

BACKGROUND: The metabolic and physiologic responses to exercise are increasingly interesting, given that regular physical activity enhances antioxidant capacity, improves cardiac function, and protects against type 2 diabetes. The metabolic interactions between tissues and the heart illustrate a critical cross-talk we know little about. METHODS: To better understand the metabolic changes induced by exercise, we investigated skeletal muscle (plantaris, soleus), liver, serum, and heart from exercise trained (or sedentary control) animals in an established rat model of exercise-induced aerobic training via non-targeted GC-MS metabolomics. RESULTS: Exercise-induced alterations in metabolites varied across tissues, with the soleus and serum affected the least. The alterations in the plantaris muscle and liver were most alike, with two metabolites increased in each (citric acid/isocitric acid and linoleic acid). Exercise training additionally altered nine other metabolites in the plantaris (C13 hydrocarbon, inosine/adenosine, fructose-6-phosphate, glucose-6-phosphate, 2-aminoadipic acid, heptadecanoic acid, stearic acid, alpha-tocopherol, and oleic acid). In the serum, we identified significantly decreased alpha-tocopherol levels, paralleling the increases identified in plantaris muscle. Eleven unique metabolites were increased in the heart, which were not affected in the other compartments (malic acid, serine, aspartic acid, myoinositol, glutamine, gluconic acid-6-phosphate, glutamic acid, pyrophosphate, campesterol, phosphoric acid, creatinine). These findings complement prior studies using targeted metabolomics approaches to determine the metabolic changes in exercise-trained human skeletal muscle. Specifically, exercise trained vastus lateralus biopsies had significantly increased linoleic acid, oleic acid, and stearic acid compared to the inactive groups, which were significantly increased in plantaris muscle in the present study. CONCLUSIONS: While increases in alpha-tocopherol have not been identified in muscle after exercise to our knowledge, the benefits of vitamin E (alpha-tocopherol) supplementation in attenuating exercise-induced muscle damage has been studied extensively. Skeletal muscle, liver, and the heart have primarily different metabolic changes, with few similar alterations and rare complementary alterations (alpha-tocopherol), which may illustrate the complexity of understanding exercise at the organismal level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...