Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eukaryot Cell ; 2(4): 729-36, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12912892

RESUMO

Glycerophosphoinositol is produced through deacylation of the essential phospholipid phosphatidylinositol. In Saccharomyces cerevisiae, the glycerophosphoinositol produced is excreted from the cell but is recycled for phosphatidylinositol synthesis when inositol is limiting. To be recycled, glycerophosphoinositol enters the cell through the permease encoded by GIT1. The transport of exogenous glycerophosphoinositol through Git1p is sufficiently robust to support the growth of an inositol auxotroph (ino1Delta). We now report that S. cerevisiae also uses exogenous phosphatidylinositol as an inositol source. Evidence suggests that phosphatidylinositol is deacylated to glycerophosphoinositol extracellularly before being transported across the plasma membrane by Git1p. A genetic screen identified Pho86p, which is required for targeting of the major phosphate transporter (Pho84p) to the plasma membrane, as affecting the utilization of phosphatidylinositol and glycerophosphoinositol. Deletion of PHO86 in an ino1Delta strain resulted in faster growth when either phosphatidylinositol or glycerophosphoinositol was supplied as the sole inositol source. The incorporation of radiolabeled glycerophosphoinositol into an ino1Delta pho86Delta mutant was higher than that into wild-type, ino1Delta, and pho86Delta strains. All strains accumulated the most GIT1 transcript when incubated in media limited for inositol and phosphate in combination. However, the ino1Delta pho86Delta mutant accumulated approximately threefold more GIT1 transcript than did the other strains when incubated in inositol-free media containing either high or low concentrations of P(i). Deletion of PHO4 abolished GIT1 transcription in a wild-type strain. These results indicate that the transport of glycerophosphoinositol by Git1p is regulated by factors affecting both inositol and phosphate availabilities and suggest a regulatory connection between phosphate metabolism and phospholipid metabolism.


Assuntos
Fosfatos de Inositol/metabolismo , Inositol/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação/genética , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Mol Cell Biol ; 21(17): 5710-22, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11486011

RESUMO

Mutations in the Saccharomyces cerevisiae SNF1 gene affect a number of cellular processes, including the expression of genes involved in carbon source utilization and phospholipid biosynthesis. To identify targets of the Snf1 kinase that modulate expression of INO1, a gene required for an early, rate-limiting step in phospholipid biosynthesis, we performed a genetic selection for suppressors of the inositol auxotrophy of snf1Delta strains. We identified mutations in ACC1 and FAS1, two genes important for fatty acid biosynthesis in yeast; ACC1 encodes acetyl coenzyme A carboxylase (Acc1), and FAS1 encodes the beta subunit of fatty acid synthase. Acc1 was shown previously to be phosphorylated and inactivated by Snf1. Here we show that snf1Delta strains with increased Acc1 activity exhibit decreased INO1 transcription. Strains carrying the ACC1 suppressor mutation have reduced Acc1 activity in vitro and in vivo, as revealed by enzymatic assays and increased sensitivity to the Acc1-specific inhibitor soraphen A. Moreover, a reduction in Acc1 activity, caused by addition of soraphen A, provision of exogenous fatty acid, or conditional expression of ACC1, suppresses the inositol auxotrophy of snf1Delta strains. Together, these findings indicate that the inositol auxotrophy of snf1Delta strains arises in part from elevated Acc1 activity and that a reduction in this activity restores INO1 expression in these strains. These results reveal a Snf1-dependent connection between fatty acid production and phospholipid biosynthesis, identify Acc1 as a Snf1 target important for INO1 transcription, and suggest models in which metabolites that are generated or utilized during fatty acid biosynthesis can significantly influence gene expression in yeast.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Proteínas de Transporte , Proteínas Fúngicas/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mio-Inositol-1-Fosfato Sintase/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas Quinases Ativadas por AMP , Acetil-CoA Carboxilase/genética , Proteínas Fúngicas/genética , Inositol/metabolismo , Fenótipo , Fosfolipídeos/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Fatores de Transcrição/genética , Transcrição Gênica
3.
J Biol Chem ; 276(6): 3756-63, 2001 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11078727

RESUMO

The regulation of phosphatidylcholine degradation as a function of the route of phosphatidylcholine (PC) synthesis and changing environmental conditions has been investigated in the yeast Saccharomyces cerevisiae. In the wild-type strains studied, deacylation of phosphatidylcholine to glycerophosphocholine is induced when choline is supplied to the culture medium and, also, when the culture temperature is raised from 30 to 37 degrees C. In strains bearing mutations in any of the genes encoding enzymes of the CDP-choline pathway for phosphatidylcholine biosynthesis (CKI1, choline kinase; CPT1, 1, 2-diacylglycerol choline phosphotransferase; PCT1, CTP:phosphocholine cytidylyltransferase), no induction of phosphatidylcholine turnover and glycerophosphocholine production is seen in response to choline availability or elevated temperature. In contrast, the induction of phosphatidylcholine deacylation does occur in a strain bearing mutations in genes encoding enzymes of the methylation pathway for phosphatidylcholine biosynthesis (i.e. CHO2/PEM1 and OPI3/PEM2). Whereas the synthesis of PC via CDP-choline is accelerated when shifted from 30 to 37 degrees C, synthesis of PC via the methylation pathway is largely unaffected by the temperature shift. These results suggest that the deacylation of PC to GroPC requires an active CDP-choline pathway for PC biosynthesis but not an active methylation pathway. Furthermore, the data indicate that the synthesis and turnover of CDP-choline-derived PC, but not methylation pathway-derived PC, are accelerated by the stress of elevated temperature.


Assuntos
Citidina Difosfato Colina/metabolismo , Fosfatidilcolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Temperatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-9752720

RESUMO

Baker's yeast, Saccharomyces cerevisiae, is an excellent and an increasingly important model for the study of fundamental questions in eukaryotic cell biology and genetic regulation. The fission yeast, Schizosaccharomyces pombe, although not as intensively studied as S. cerevisiae, also has many advantages as a model system. In this review, we discuss progress over the past several decades in biochemical and molecular genetic studies of the regulation of phospholipid metabolism in these two organisms and higher eukaryotes. In S. cerevisiae, following the recent completion of the yeast genome project, a very high percentage of the gene-enzyme relationships in phospholipid metabolism have been assigned and the remaining assignments are expected to be completed rapidly. Complex transcriptional regulation, sensitive to the availability of phospholipid precusors, as well as growth phase, coordinates the expression of the structural genes encoding these enzymes in S. cerevisiae. In this article, this regulation is described, the mechanism by which the cell senses the ongoing metabolic activity in the pathways for phospholipid biosynthesis is discussed, and a model is presented. Recent information relating to the role of phosphatidylcholine turnover in S. cerevisiae and its relationship to the secretory pathway, as well as to the regulation of phospholipid metabolism, is also presented. Similarities in the role of phospholipase D-mediated phosphatidylcholine turnover in the secretory process in yeast and mammals lend further credence to yeast as a model system.


Assuntos
Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Fosfolipídeos/biossíntese , Fosfolipídeos/genética , Schizosaccharomyces/genética
5.
Genetics ; 149(4): 1707-15, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9691030

RESUMO

Phosphatidylinositol catabolism in Saccharomyces cerevisiae cells cultured in media containing inositol results in the release of glycerophosphoinositol (GroPIns) into the medium. As the extracellular concentration of inositol decreases with growth, the released GroPIns is transported back into the cell. Exploiting the ability of the inositol auxotroph, ino1, to use exogenous GroPIns as an inositol source, we have isolated mutants (Git-) defective in the uptake and metabolism of GroPIns. One mutant was found to be affected in the gene encoding the transcription factor, SPT7. Mutants of the positive regulatory gene INO2, but not of its partner, INO4, also have the Git- phenotype. Another mutant was complemented by a single open reading frame (ORF) termed GIT1 (glycerophosphoinositol). This ORF consists of 1556 bp predicted to encode a polypeptide of 518 amino acids and 57.3 kD. The predicted Git1p has similarity to a variety of S. cerevisiae transporters, including a phosphate transporter (Pho84p), and both inositol transporters (Itr1p and Itr2p). Furthermore, Git1p contains a sugar transport motif and 12 potential membrane-spanning domains. Transport assays performed on a git1 mutant together with the above evidence indicate that the GIT1 gene encodes a permease involved in the uptake of GroPIns.


Assuntos
Genes Fúngicos , Fosfatos de Inositol/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Bases , Transporte Biológico Ativo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Proteínas de Membrana Transportadoras , Mutação , Fases de Leitura Aberta , Fenótipo , Fatores de Transcrição/genética
6.
J Biol Chem ; 273(27): 16635-8, 1998 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-9642212

RESUMO

The SEC14 gene encodes a phosphatidylinositol/phosphatidylcholine transfer protein essential for secretion and growth in yeast (1). Mutations (cki1, cct1, and cpt1) in the CDP-choline pathway for phosphatidylcholine synthesis suppress the sec14 growth defect (2), permitting sec14(ts) cki1, sec14(ts) cct1, and sec14(ts) cpt1 strains to grow at the sec14(ts) restrictive temperature. Previously, we reported that these double mutant strains also excrete the phospholipid metabolites, choline and inositol (3). We now report that these choline and inositol excretion phenotypes are eliminated when the SPO14 (PLD1) gene encoding phospholipase D1 is deleted. In contrast to sec14(ts) cki1 strains, sec14(ts) cki1 pld1 strains are not viable at the sec14(ts) restrictive temperature and exhibit a pattern of invertase secretion comparable with sec14(ts) strains. Thus, the PLD1 gene product appears to play an essential role in the suppression of the sec14(ts) defect by CDP-choline pathway mutations, indicating a role for phospholipase D1 in growth and secretion. Furthermore, sec14(ts) strains exhibit elevated Ca2+-independent, phophatidylinositol 4,5-bisphosphate-stimulated phospholipase D activity. We also propose that phospholipase D1-mediated phosphatidylcholine turnover generates a signal that activates transcription of INO1, the structural gene for inositol 1-phosphate synthase.


Assuntos
Lipídeos de Membrana/biossíntese , Fosfolipase D/metabolismo , Saccharomyces cerevisiae/metabolismo , Citidina Difosfato Colina/metabolismo , Lipídeos de Membrana/metabolismo , Fenótipo , Fosfatidilcolinas/metabolismo , Fosfolipase D/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
7.
J Biol Chem ; 272(33): 20873-83, 1997 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-9252414

RESUMO

In yeast, mutations in the CDP-choline pathway for phosphatidylcholine biosynthesis permit the cell to grow even when the SEC14 gene is completely deleted (Cleves, A., McGee, T., Whitters, E., Champion, K., Aitken, J., Dowhan, W., Goebl, M., and Bankaitis, V. (1991) Cell 64, 789-800). We report that strains carrying mutations in the CDP-choline pathway, such as cki1, exhibit a choline excretion phenotype due to production of choline during normal turnover of phosphatidylcholine. Cells carrying cki1 in combination with sec14(ts), a temperature-sensitive allele in the gene encoding the phosphatidylinositol/phosphatidylcholine transporter, have a dramatically increased choline excretion phenotype when grown at the sec14(ts)-restrictive temperature. We show that the increased choline excretion in sec14(ts) cki1 cells is due to increased turnover of phosphatidylcholine via a mechanism consistent with phospholipase D-mediated turnover. We propose that the elevated rate of phosphatidylcholine turnover in sec14(ts) cki1 cells provides the metabolic condition that permits the secretory pathway to function when Sec14p is inactivated. As phosphatidylcholine turnover increases in sec14(ts) cki1 cells shifted to the restrictive temperature, the INO1 gene (encoding inositol-1-phosphate synthase) is also derepressed, leading to an inositol excretion phenotype (Opi-). Misregulation of the INO1 gene has been observed in many strains with altered phospholipid metabolism, and the relationship between phosphatidylcholine turnover and regulation of INO1 and other co-regulated genes of phospholipid biosynthesis is discussed.


Assuntos
Proteínas de Transporte/fisiologia , Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana , Mio-Inositol-1-Fosfato Sintase/genética , Fosfatidilcolinas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Colina/metabolismo , Inositol/metabolismo , Proteínas de Transferência de Fosfolipídeos , Fosfolipídeos/análise , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...