Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118133, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580187

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica roots are a significant source of traditional medicines for various cultures around the northern hemisphere, from indigenous communities in North America to Japan. Among its many applications, the roots are used to treat type 2 diabetes mellitus; however, this application is not mentioned often. Ethnopharmacological studies have reported the use of A. japonica var. hirsutiflora, A. furcijuga, A. shikokiana, and A. keiskei to treat diabetes symptoms, and further reports have demonstrated the three angelica roots, i.e., A. japonica var. hirsutiflora, A. reflexa, and A. dahurica, exhibit insulin secretagogue activity. AIM OF THE STUDY: This study aimed to phytochemically characterize and compare angelica roots monographed in the European Pharmacopeia 11th, isolate major plant metabolites, and assess extracts and isolates' capability to modulate pancreatic ß-cell function. MATERIALS AND METHODS: Root extracts of Angelica archangelica, Angelica dahurica, Angelica biserrata, and Angelica sinensis were phytochemically profiled using liquid chromatography method coupled with mass spectrometry. Based on this analysis, simple and furanocoumarins were isolated using chromatography techniques. Extracts (1.6-50 µg/mL) and isolated compounds (5-40 µmol/L) were studied for their ability to modulate insulin secretion in the rat insulinoma INS-1 pancreatic ß-cell model. Insulin was quantified by the homogeneous time-resolved fluorescence method. RESULTS: Forty-one secondary metabolites, mostly coumarins, were identified in angelica root extracts. A. archangelica, A. dahurica, and A. biserrata root extracts at concentration of 12.5-50 µg/mL potentiated glucose-induced insulin secretion, which correlated with their high coumarin content. Subsequently, 23 coumarins were isolated from these roots and screened using the same protocol. Coumarins substituted with the isoprenyl group were found to be responsible for the extracts' insulinotropic effect. CONCLUSIONS: Insulinotropic effects of three pharmacopeial angelica roots were found, the metabolite profiles and pharmacological activities of the roots were correlated, and key structures responsible for the modulation of pancreatic ß-cell function were identified. These findings may have implications for the traditional use of angelica roots in treating diabetes. Active plant metabolites may also become lead structures in the search for new antidiabetic treatments.


Assuntos
Angelica , Células Secretoras de Insulina , Compostos Fitoquímicos , Extratos Vegetais , Raízes de Plantas , Angelica/química , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/análise , Ratos , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/química
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835169

RESUMO

Inflammation is the first physiological defence mechanism against external and internal stimuli. The prolonged or inappropriate response of the immune system may lead to the persistent inflammatory response that can potentially become a basis for chronic diseases e.g., asthma, type II diabetes or cancer. An important role in the alleviation of inflammatory processes, as an adjunct to traditional pharmacological therapy, is attributed to phytotherapy, especially to raw materials with a long tradition of use, e.g., ash leaves. Despite their long-term use in phytotherapy, the specific mechanisms of action have not been confirmed in a sufficient number of biological or clinical studies. The aim of the study is a detailed phytochemical analysis of infusion and its fractions, isolation of pure compounds from the leaves of Fraxinus excelsior and evaluation of their effect on the secretion of anti-inflammatory cytokines (TNF-α, IL-6) and IL-10 receptor expression in an in vitro model of monocyte/macrophage cells isolated from peripheral blood. Methods: Phytochemical analysis was carried out by the UHPLC-DAD-ESI-MS/MS method. Monocytes/macrophages were isolated from human peripheral blood using density gradient centrifugation on Pancoll. After 24 h incubation with tested fractions/subfractions and pure compounds, cells or their supernatants were studied, respectively, on IL-10 receptor expression by flow cytometry and IL-6, TNF-α, IL-1ß secretion by the ELISA test. Results were presented with respect to Lipopolysaccharide (LPS) control and positive control with dexamethasone. Results: The infusion, 20% and 50% methanolic fractions and their subfractions, as well as their dominating compounds, e.g., ligstroside, formoside and oleoacteoside isolated from the leaves, show the ability to increase the IL-10 receptor expression on the surface of monocyte/macrophage cells, stimulated by LPS, and to decrease the secretion of pro-inflammatory cytokines, e.g., TNF-α, IL-6.


Assuntos
Anti-Inflamatórios , Fraxinus , Compostos Fitoquímicos , Humanos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fraxinus/química , Fraxinus/metabolismo , Interleucina-6 , Lipopolissacarídeos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
3.
Cells ; 11(20)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291197

RESUMO

Many species from the Pinaceae family have been recognized as a rich source of lignans, flavonoids, and other polyphenolics. The great common occurrence of conifers in Europe, as well as their use in the wood industry, makes both plant material and industrial waste material easily accessible and inexpensive. This is a promising prognosis for both discovery of new active compounds as well as for finding new applications for wood and its industry waste products. This study aimed to analyze and phytochemically profile 13 wood extracts of the Pinaceae family species, endemic or introduced in Polish flora, using the LC-DAD-ESI-MS/MS method and compare their respective metabolite profiles. Branch wood methanolic extracts were phytochemically profiled. Lignans, stilbenes, flavonoids, diterpenes, procyanidins, and other compounds were detected, with a considerable variety of chemical content among distinct species. Norway spruce (Picea abies (L.) H.Karst.) branch wood was the most abundant source of stilbenes, European larch (Larix decidua Mill.) mostly contained flavonoids, while silver fir (Abies alba Mill.) was rich in lignans. Furthermore, 10 lignans were isolated from the studied material. Our findings confirm that wood industry waste materials, such as conifer branches, can be a potent source of different phytochemicals, with the plant matrix being relatively simple, facilitating future isolation of target compounds.


Assuntos
Lignanas , Proantocianidinas , Estilbenos , Traqueófitas , Proantocianidinas/análise , Madeira , Espectrometria de Massas em Tandem/métodos , Resíduos Industriais/análise , Compostos Fitoquímicos/química , Flavonoides , Extratos Vegetais/química
4.
Plants (Basel) ; 11(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079704

RESUMO

Lignans are a group of natural polyphenols present in medicinal plants and in plants which are a part of the human diet for which more and more pharmacological activities, such as antimicrobial, anti-inflammatory, hypoglycemic, and cytoprotective, are being reported. However, it is their cytotoxic activities that are best understood and which have shed light on this group. Two anticancer drugs, etoposide, and teniposide, were derived from a potent cytotoxic agent-podophyllotoxin from the roots of Podophyllum peltatum. The evidence from clinical and observational studies suggests that human microbiota metabolites (enterolactone, enterodiol) of dietary lignans (secoisolariciresinol, pinoresinol, lariciresinol, matairesinol, syringaresinol, medioresinol, and sesamin) are associated with a reduced risk of some hormone-dependent cancers. The biological in vitro, pharmacological in vivo investigations, and clinical studies demand significant amounts of pure compounds, as well as the use of well-defined and standardized extracts. That is why proper extract preparation, optimization of lignan extraction, and identification are crucial steps in the development of lignan use in medicine. This review focuses on lignan extraction, purification, fractionation, separation, and isolation methods, as well as on chromatographic, spectrometric, and spectroscopic techniques for their qualitative and quantitative analysis.

5.
Phytochem Anal ; 31(1): 57-67, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31286597

RESUMO

INTRODUCTION: In European traditional medicine, common ash leaf infusion is recommended by European Medicines Agency to treat minor articular pain and to increase the amount of urine for flushing minor urinary complaints. However, a comprehensive ultra-high-performance liquid chromatography diode array detector electrospray ionisation tandem mass spectrometry (UHPLC-DAD-ESI-MS/MS) analysis of this pharmacopeial plant material has never been performed. Moreover, the number of biological and pharmacological investigations proving the usefulness of this plant material in recommended traditional uses is surprisingly small. OBJECTIVE: Phytochemical profiling of ash leaf samples from different commercial and natural sources and the determination of the in vitro effects on inflammatory mediators in a model of human neutrophils. METHODS: Ash leaf samples were characterised by total hydroxycinnamic acid content and by high-performance thin layer chromatography (HPTLC), UHPLC-DAD-ESI-MS/MS methods. The effects of leaf infusions on reactive oxygen species (ROS), tumor necrosis factor (TNF-α), interleukin 8 (IL-8), interleukin 1ß (IL-1ß), and monocyte chemoattractant protein 1 (MCP-1) production by neutrophils were measured using luminol-dependent chemiluminescence and enzyme-linked immunosorbent assay (ELISA). RESULTS: In ash leaf samples 64 compounds were identified or partly identified together with four unknown compounds. The major compounds detected belong to different structural groups, including phenolic acid derivatives, phenylethanoids, flavonoids, iridoids, secoiridoids and lignans. The major compounds detected in ash samples were chlorogenic acid, quercetin-3-O-rutinoside, verbascoside, oleuropein and ligstroside. However, one sample contained coumarin derivatives. This finding suggested adulteration with other Fraxinus species and/or plant parts. All infusions were able to inhibit ROS, cytokine and chemokine production. CONCLUSIONS: The performed phytochemical and biological analyses contribute to the knowledge about this pharmacopeial plant material and supports its traditional use to treat minor inflammatory complaints.


Assuntos
Fraxinus , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Flavonoides , Humanos , Mediadores da Inflamação , Extratos Vegetais , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...