Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 10(1): 359-369, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325123

RESUMO

Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world's oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a "headful" type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated.


Assuntos
DNA Bacteriano/genética , Transferência Genética Horizontal , Rhodobacteraceae/genética , Proteínas de Bactérias/genética , Composição de Bases , Família Multigênica , Oceanos e Mares
2.
Front Microbiol ; 7: 742, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303368

RESUMO

Rhodobacteraceae harbor a conspicuous wealth of extrachromosomal replicons (ECRs) and therefore the exchange of genetic material via horizontal transfer has been supposed to be a major evolutionary driving force. Many plasmids in this group encode type IV secretion systems (T4SS) that are expected to mediate transfer of proteins and/or DNA into host cells, but no experimental evidence of either has yet been provided. Dinoroseobacter shibae, a species of the Roseobacter group within the Rhodobacteraceae family, contains five ECRs that are crucial for anaerobic growth, survival under starvation and the pathogenicity of this model organism. Here we tagged two syntenous but compatible RepABC-type plasmids of 191 and 126-kb size, each encoding a T4SS, with antibiotic resistance genes and demonstrated their conjugational transfer into a distantly related Roseobacter species, namely Phaeobacter inhibens. Pulsed field gel electrophoresis showed transfer of those replicons into the recipient both individually but also together documenting the efficiency of conjugation. We then studied the influence of externally added quorum sensing (QS) signals on the expression of the T4SS located on the sister plasmids. A QS deficient D. shibae null mutant (ΔluxI1 ) lacking synthesis of N-acyl-homoserine lactones (AHLs) was cultivated with a wide spectrum of chemically diverse long-chain AHLs. All AHLs with lengths of the acid side-chain ≥14 reverted the ΔluxI1 phenotype to wild-type. Expression of the T4SS was induced up to log2 ∼3fold above wild-type level. We hypothesize that conjugation in roseobacters is QS-controlled and that the QS system may detect a wide array of long-chain AHLs at the cell surface.

3.
Mycologia ; 108(3): 581-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26908649

RESUMO

The fungal vacuole is an organelle, which adopts pleiotropic morphologies and functions. In aging and starving hyphae it is the compartment of degradation and recycling of cellular constituents. Here we identified TSP3, one of three tetraspanins present in the filamentous ascomycete fungus Neurospora crassa, as a vacuolar membrane protein. The protein is detected only in aging and starving cultures and under other conditions, which induce autophagy, such as vegetative incompatibility or the presence of the macrolide antibiotic rapamycin. Mutant analysis revealed that TSP3 is dispensable for growth and development of the fungus under laboratory conditions. Together these findings indicate that tsp3 shares characteristics with idi (induced during incompatibility) genes and might promote vacuolar functions related to autophagy.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Neurospora crassa/metabolismo , Tetraspaninas/metabolismo , Vacúolos/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Tetraspaninas/genética , Vacúolos/genética
4.
Chembiochem ; 14(17): 2355-61, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24218333

RESUMO

Bacteria of the Roseobacter clade are widespread in the ocean and occur in many different habitats. In the genome of Dinoroseobacter shibae DFL-12, luxI homologous genes that encode synthases responsible for the formation of N-acylhomoserine lactones (AHLs) have been described. These compounds are known autoinducers that regulate several biological traits-namely, flagella formation and cell differentiation-in D. shibae through quorum sensing. The AHLs produced by D. shibae mainly consisted of N-octadecadienoylhomoserine lactone (C18:2-AHL) and N-octadecenoylhomoserine lactone (C18:1-HSL). In the wild type these AHLs are synthesized only in low abundance. The luxI genes were therefore expressed in Escherichia coli; this resulted in the formation of AHLs mostly different from those found in the D. shibae wild type. A luxI1 -deficient mutant of D. shibae was then reprovided with an overexpressed luxI1 gene. This strain produced large amounts of C18:2-AHL and C18:1-AHL, allowing full characterization of these compounds by mass spectrometric techniques and derivatization. Synthesis of the proposed structures confirmed that the major compound is (2E,11Z)-N-octadeca-2,11-dienoylhomoserine lactone (6, C18:2-HSL), accompanied by (Z)-N-octadec-11-enoylhomoserine lactone (5, C18:1-HSL). AHL 6 has not been reported before from other organisms and contains an unusual 2E double bond.


Assuntos
Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Acil-Butirolactonas/química , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Bacterianos/genética , Conformação Molecular , Rhodobacteraceae/química , Fatores de Transcrição/metabolismo
5.
Chem Biodivers ; 10(9): 1559-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24078590

RESUMO

The Roseobacter clade is one of the most important bacteria group living in the ocean. Liquid cultures of Roseovarius tolerans EL 164 were investigated for the production of autoinducers such as N-acylhomoserine lactones (AHLs) and other secondary metabolites. The XAD extracts were analyzed by GC/MS. Two AHLs, Z7-C14 : 1-homoserine lactone (HSL) and C15 : 1-HSL, were identified. Additionally, the extract contained five compounds with molecular-ion peaks at m/z 104, 145, and 158, thus exhibiting mass spectra similar to those of AHLs with corresponding peaks at m/z 102, 143, and 156. Isolation of the main compound by column chromatography, NMR analysis, dimethyl disulfide derivatization for the determination of the location of the CC bond and finally synthesis of the compound with the proposed structure confirmed the compound to be (Z)-N-(hexadec-9-enoyl)alanine methyl ester. Four additional minor compounds were identified as C14 : 0-, C15 : 0-, C16 : 0-, and C17 : 1-N-acylated alanine methyl esters (NAMEs). All NAMEs have not been described from natural sources before. A BLASTp search showed the presence of AHL-producing luxI genes, but no homologous genes potentially responsible for the structurally closely related NAMEs were found. The involvement of the NAMEs in chemical communication processes of the bacteria is discussed.


Assuntos
4-Butirolactona/análogos & derivados , Acil-Butirolactonas/química , Alanina/análogos & derivados , Ácidos Graxos Monoinsaturados/química , Rhodobacteraceae/química , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , Acil-Butirolactonas/síntese química , Alanina/química , Alanina/isolamento & purificação , Proteínas de Bactérias/metabolismo , Ésteres/química , Ácidos Graxos Monoinsaturados/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Conformação Molecular , Rhodobacteraceae/metabolismo , Fatores de Transcrição/metabolismo
6.
ISME J ; 7(12): 2274-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23823498

RESUMO

Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, is characterized by a pronounced pleomorphism. Cell shapes range from variable-sized ovoid rods to long filaments with a high copy number of chromosomes. Time-lapse microscopy shows cells dividing either by binary fission or by budding from the cell poles. Here we demonstrate that this morphological heterogeneity is induced by quorum sensing (QS). D. shibae utilizes three acylated homoserine lactone (AHL) synthases (luxI1-3) to produce AHLs with unsaturated C18 side chains. A ΔluxI1-knockout strain completely lacking AHL biosynthesis was uniform in morphology and divided by binary fission only. Transcriptome analysis revealed that expression of genes responsible for control of cell division was reduced in this strain, providing the link between QS and the observed phenotype. In addition, flagellar biosynthesis and type IV secretion system (T4SS) were downregulated. The wild-type phenotype and gene expression could be restored through addition of synthetic C18-AHLs. Their effectiveness was dependent on the number of double bonds in the acyl side chain and the regulated trait. The wild-type expression level of T4SS genes was fully restored even by an AHL with a saturated C18 side chain that has not been detected in D. shibae. QS induces phenotypic individualization of D. shibae cells rather than coordinating the population. This strategy might be beneficial in unpredictably changing environments, for example, during algal blooms when resource competition and grazing exert fluctuating selective pressures. A specific response towards non-native AHLs might provide D. shibae with the capacity for complex interspecies communication.


Assuntos
Percepção de Quorum/fisiologia , Rhodobacteraceae/citologia , Rhodobacteraceae/fisiologia , Acil-Butirolactonas/metabolismo , Divisão Celular/fisiologia , Técnicas de Inativação de Genes , Teste de Complementação Genética , Mutação , Percepção de Quorum/genética , Rhodobacteraceae/genética , Rhodobacteraceae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...