Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(7): 1216-1223, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831016

RESUMO

Although invasive alien species have long been recognized as a major threat to nature and people, until now there has been no comprehensive global review of the status, trends, drivers, impacts, management and governance challenges of biological invasions. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Thematic Assessment Report on Invasive Alien Species and Their Control (hereafter 'IPBES invasive alien species assessment') drew on more than 13,000 scientific publications and reports in 15 languages as well as Indigenous and local knowledge on all taxa, ecosystems and regions across the globe. Therefore, it provides unequivocal evidence of the major and growing threat of invasive alien species alongside ambitious but realistic approaches to manage biological invasions. The extent of the threat and impacts has been recognized by the 143 member states of IPBES who approved the summary for policymakers of this assessment. Here, the authors of the IPBES assessment outline the main findings of the IPBES invasive alien species assessment and highlight the urgency to act now.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies Introduzidas , Animais , Ecossistema
2.
Trends Ecol Evol ; 39(5): 409-412, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508924

RESUMO

Inclusivity is fundamental to progress in understanding and addressing the global phenomena of biological invasions because inclusivity fosters a breadth of perspectives, knowledge, and solutions. Here, we report on how the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) assessment on invasive alien species (IAS) prioritized inclusivity, the benefits of this approach, and the remaining challenges.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies Introduzidas , Conservação dos Recursos Naturais/métodos , Ecossistema , Política Ambiental
3.
Nat Ecol Evol ; 7(3): 405-413, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702858

RESUMO

High-elevation ecosystems are among the few ecosystems worldwide that are not yet heavily invaded by non-native plants. This is expected to change as species expand their range limits upwards to fill their climatic niches and respond to ongoing anthropogenic disturbances. Yet, whether and how quickly these changes are happening has only been assessed in a few isolated cases. Starting in 2007, we conducted repeated surveys of non-native plant distributions along mountain roads in 11 regions from 5 continents. We show that over a 5- to 10-year period, the number of non-native species increased on average by approximately 16% per decade across regions. The direction and magnitude of upper range limit shifts depended on elevation across all regions. Supported by a null-model approach accounting for range changes expected by chance alone, we found greater than expected upward shifts at lower/mid elevations in at least seven regions. After accounting for elevation dependence, significant average upward shifts were detected in a further three regions (revealing evidence for upward shifts in 10 of 11 regions). Together, our results show that mountain environments are becoming increasingly exposed to biological invasions, emphasizing the need to monitor and prevent potential biosecurity issues emerging in high-elevation ecosystems.


Assuntos
Altitude , Ecossistema , Espécies Introduzidas , Plantas , Dispersão Vegetal
4.
J Environ Manage ; 325(Pt B): 116480, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306626

RESUMO

Biological invasions produce negative impacts worldwide, causing massive economic costs and ecological impacts. Knowing the relationship between invasive species abundance and the magnitude of their impacts (abundance-impact curves) is critical to designing prevention and management strategies that effectively tackle these impacts. However, different measures of abundance may produce different abundance-impact curves. Woody plants are among the most transformative invaders, especially in grassland ecosystems because of the introduction of hitherto absent life forms. In this study, our first goal was to assess the impact of a woody invader, Pinus contorta (hereafter pine), on native grassland productivity and livestock grazing in Patagonia (Argentina), building abundance-impact curves. Our second goal, was to compare different measure of pine abundance (density, basal area and canopy cover) as predictors of pine's impact on grassland productivity. Our third goal, was to compare abundance-impact curves among the mentioned measures of pine abundance and among different measures of impact: total grassland productivity, palatable productivity and sheep stocking rate (the number of sheep that the grassland can sustainably support). Pine canopy cover, closely followed by basal area, was the measure of abundance that best explained the impact on grassland productivity, but the shape of abundance impact curves differed between measures of abundance. While increases in pine density and basal area always reduced grassland productivity, pine canopy cover below 30% slightly increased grassland productivity and higher values caused an exponential decline. This increase in grassland productivity with low levels of pine canopy cover could be explained by the amelioration of stressful abiotic conditions for grassland species. Different measures of impact, namely total productivity, palatable productivity and sheep stocking rate, drew very similar results. Our abundance-impact curves are key to guide the management of invasive pines because a proper assessment of how many invasive individuals (per surface unit) are unacceptable, according to environmental or economic impact thresholds, is fundamental to define when to start management actions.


Assuntos
Pinus , Árvores , Ovinos , Animais , Pradaria , Ecossistema , Espécies Introduzidas , Gado
5.
J Biogeogr ; 49(8): 1420-1442, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247109

RESUMO

Aim: Climate change is expected to impact mountain biodiversity by shifting species ranges and the biomes they shape. The extent and regional variation in these impacts are still poorly understood, particularly in the highly biodiverse Andes. Regional syntheses of climate change impacts on vegetation are pivotal to identify and guide research priorities. Here we review current data, knowledge and uncertainties in past, present and future climate change impacts on vegetation in the Andes. Location: Andes. Taxon: Plants. Methods: We (i) conducted a literature review on Andean vegetation responses to past and contemporary climatic change, (ii) analysed future climate projections for different elevations and slope orientations at 19 Andean locations using an ensemble of model outputs from the Coupled Model Intercomparison Project 5, and (iii) calculated changes in the suitable climate envelope area of Andean biomes and compared these results to studies that used species distribution models. Results: Future climatic changes (2040-2070) are projected to be stronger at high-elevation areas in the tropical Andes (up to 4°C under RCP 8.5), while in the temperate Andes temperature increases are projected to be up to 2°C. Under this worst-case scenario, temperate deciduous forests and the grasslands/steppes from the Central and Southern Andes are predicted to show the greatest losses of suitable climatic space (30% and 17%-23%, respectively). The high vulnerability of these biomes contrasts with the low attention from researchers modelling Andean species distributions. Critical knowledge gaps include a lack of an Andean wide plant checklist, insufficient density of weather stations at high-elevation areas, a lack of high-resolution climatologies that accommodates the Andes' complex topography and climatic processes, insufficient data to model demographic and ecological processes, and low use of palaeo data for distribution modelling. Main conclusions: Climate change is likely to profoundly affect the extent and composition of Andean biomes. Temperate Andean biomes in particular are susceptible to substantial area contractions. There are, however, considerable challenges and uncertainties in modelling species and biome responses and a pressing need for a region-wide approach to address knowledge gaps and improve understanding and monitoring of climate change impacts in these globally important biomes.

6.
Nat Commun ; 13(1): 4683, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050293

RESUMO

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.


Assuntos
Biodiversidade , Traqueófitas , Ecossistema , Plantas
7.
Ecol Evol ; 12(2): e8590, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222963

RESUMO

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.

8.
Environ Manage ; 69(1): 140-153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586487

RESUMO

Formulating effective management plans for addressing the impacts of invasive non-native species (INNS) requires the definition of clear priorities and tangible targets, and the recognition of the plurality of societal values assigned to these species. These tasks require a multi-disciplinary approach and the involvement of stakeholders. Here, we describe procedures to integrate multiple sources of information to formulate management priorities, targets, and high-level actions for the management of INNS. We follow five good-practice criteria: justified, evidence-informed, actionable, quantifiable, and flexible. We used expert knowledge methods to compile 17 lists of ecological, social, and economic impacts of lodgepole pines (Pinus contorta) and American mink (Neovison vison) in Chile and Argentina, the privet (Ligustrum lucidum) in Argentina, the yellow-jacket wasp (Vespula germanica) in Chile, and grasses (Urochloa brizantha and Urochloa decumbens) in Brazil. INNS plants caused a greater number of impacts than INNS animals, although more socio-economic impacts were listed for INNS animals than for plants. These impacts were ranked according to their magnitude and level of confidence on the information used for the ranking to prioritise impacts and assign them one of four high-level actions-do nothing, monitor, research, and immediate active management. We showed that it is possible to formulate management priorities, targets, and high-level actions for a variety of INNS and with variable levels of available information. This is vital in a world where the problems caused by INNS continue to increase, and there is a parallel growth in the implementation of management plans to deal with them.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Animais , Argentina , Brasil , Chile , Plantas
9.
Trends Ecol Evol ; 36(9): 766-769, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256986

RESUMO

Ecology must flourish globally, especially in a period of unprecedented anthropogenic global change. However, some regions dominate the ecological literature. Multiple barriers prevent global production and exchange of ecological knowledge. The first step towards solutions is acknowledging and diagnosing this inequality and embracing our geographical and cultural diversity.


Assuntos
Ecologia
10.
New Phytol ; 232(1): 303-317, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33966267

RESUMO

The success of invasive plants is influenced by many interacting factors, but evaluating multiple possible mechanisms of invasion success and elucidating the relative importance of abiotic and biotic drivers is challenging, and therefore rarely achieved. We used live, sterile or inoculated soil from different soil origins (native range and introduced range plantation; and invaded plots spanning three different countries) in a fully factorial design to simultaneously examine the influence of soil origin and soil abiotic and biotic factors on the growth of invasive Pinus contorta. Our results displayed significant context dependency in that certain soil abiotic conditions in the introduced ranges (soil nitrogen, phosphorus or carbon content) influenced responses to inoculation treatments. Our findings do not support the enemy release hypothesis or the enhanced mutualism hypothesis, as biota from native and plantation ranges promoted growth similarly. Instead, our results support the missed mutualism hypothesis, as biota from invasive ranges were the least beneficial for seedling growth. Our study provides a novel perspective on how variation in soil abiotic factors can influence plant-soil feedbacks for an invasive tree across broad biogeographical contexts.


Assuntos
Pinus , Solo , Espécies Introduzidas , Plântula , Microbiologia do Solo , Árvores
11.
New Phytol ; 230(3): 1156-1168, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32984980

RESUMO

Plant associated mutualists can mediate invasion success by affecting the ecological niche of nonnative plant species. Anthropogenic disturbance is also key in facilitating invasion success through changes in biotic and abiotic conditions, but the combined effect of these two factors in natural environments is understudied. To better understand this interaction, we investigated how disturbance and its interaction with mycorrhizas could impact range dynamics of nonnative plant species in the mountains of Norway. Therefore, we studied the root colonisation and community composition of arbuscular mycorrhizal (AM) fungi in disturbed vs undisturbed plots along mountain roads. We found that roadside disturbance strongly increases fungal diversity and richness while also promoting AM fungal root colonisation in an otherwise ecto-mycorrhiza and ericoid-mycorrhiza dominated environment. Surprisingly, AM fungi associating with nonnative plant species were present across the whole elevation gradient, even above the highest elevational limit of nonnative plants, indicating that mycorrhizal fungi are not currently limiting the upward movement of nonnative plants. We conclude that roadside disturbance has a positive effect on AM fungal colonisation and richness, possibly supporting the spread of nonnative plants, but that there is no absolute limitation of belowground mutualists, even at high elevation.


Assuntos
Micorrizas , Ecossistema , Fungos , Noruega , Plantas , Solo , Microbiologia do Solo , Simbiose
13.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32663906

RESUMO

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Espécies Introduzidas , Mudança Climática , Ecossistema , Previsões , Humanos
14.
Trends Ecol Evol ; 35(8): 642-645, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487347

RESUMO

Emerging infectious diseases, such as coronavirus disease 2019 (COVID-19), are driven by ecological and socioeconomic factors, and their rapid spread and devastating impacts mirror those of invasive species. Collaborations between biomedical researchers and ecologists, heretofore rare, are vital to limiting future outbreaks. Enhancing the crossdisciplinary framework offered by invasion science could achieve this goal.

15.
Biol Rev Camb Philos Soc ; 95(6): 1511-1534, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32588508

RESUMO

Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species - the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods - are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long-term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long-term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Biodiversidade , Filogenia , Densidade Demográfica , Ratos
17.
Ecol Evol ; 9(13): 7562-7573, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346422

RESUMO

AIM: Tree invasions are a threat to biodiversity conservation, and although it is hard to predict the future spread of invasive tree species, there are tools available which could allow some estimations. The magnitude of spatial spread (a proxy of invasiveness) can be predicted from species climatic requirement (climatic niche) and can be represented by species distribution models (SDMs). We aimed to assess whether Acacia dealbata conserves its niche in the new environment of south-central Chile, and also, to estimate the invasive stage of the species. LOCATION: South-central area of Chile, between the O'Higgins (34°0″0'S) and Aysen Regions (47°0″0'S). METHODS: We used a combination of global, native, and regional data to improve the estimation of the potential distribution of A. dealbata, which has been considered one of the most invasive species of the genus, being registered in at least 34 countries in all the Continents. RESULTS: Our results show that A. dealbata does not conserve its niche in the study area, invading areas with climatic conditions different from those of the native range. It is also not at equilibrium with the environment. According to the global versus regional SDM comparisons, populations present in south-central Chile present different invasion stages. There are some stable populations, but there are other populations colonizing new areas, occupying unsuitable habitats and some of them are adapting to new climatic conditions. Climatic factors, such as precipitation seasonality, could be acting behind the expansion to new environments, and biotic factors or dispersal limitations could be preventing the species to colonize suitable areas. MAIN CONCLUSIONS: The invasion process of A. dealbata is far from stabilizing, and management options should focus on prevention, avoiding, for example, the introduction of the species to Patagonia where the species has not spread yet. More research is needed to complement our results and enhance the development of effective management strategies.

18.
J Environ Manage ; 229: 57-66, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30017110

RESUMO

Tree invasions are increasing globally, causing major problems for biodiversity, ecosystem services and human well-being. In South America, conifer invasions occur across many ecosystems and while numerous studies address the ecological consequences of these invasions, little is known about social perceptions and people's attitudes toward their control. The social perceptions on the effect of invasive conifers can include recreational, cultural and conservation dimensions. This study, conducted in the Malalcahuello National Reserve, aims to assess visitor's perception about invasive pines (Pinus spp.) and their effects on the endangered Araucaria araucana forests and determine their willingness to pay for pine control. We used a questionnaire to survey visitors to the reserve in both winter and summer (n = 138 for each season). When confronted with six images of araucaria and pine forests with and without snow, visitors consistently preferred landscapes without pines and disliked those completely dominated by pines the most. Almost half, 46.5%, of the visitors expressed their willingness to pay (WTP) for pine control and after given a brief explanation about pine impacts, this number rose to 79%. Visitors who said they were unwilling to pay argue ethical, aesthetic and pragmatic considerations relating closely to a number of social value systems and beliefs. Our study shows that there is a high variation in how people assess the threat of invasive pine species in natural areas, but education even in a very brief format can help to increase awareness of the problem and build social and financial support for its control.


Assuntos
Espécies Introduzidas , Pinus , Biodiversidade , Florestas , Humanos , Percepção , Estações do Ano , América do Sul , Árvores
20.
PLoS One ; 13(10): e0205287, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278062

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0201195.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...