Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 892: 164506, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37295515

RESUMO

Microbial communities, and their ecological importance, have been investigated in several habitats. However, so far, most studies could not describe the closest microbial interactions and their functionalities. This study investigates the co-occurring interactions between fungi and bacteria in plant rhizoplanes and their potential functions. The partnerships were obtained using fungal-highway columns with four plant-based media. The fungi and associated microbiomes isolated from the columns were identified by sequencing the ITS (fungi) and 16S rRNA genes (bacteria). Statistical analyses including Exploratory Graph and Network Analysis were used to visualize the presence of underlying clusters in the microbial communities and evaluate the metabolic functions associated with the fungal microbiome (PICRUSt2). Our findings characterize the presence of both unique and complex bacterial communities associated with different fungi. The results showed that Bacillus was associated as exo-bacteria in 80 % of the fungi but occurred as putative endo-bacteria in 15 %. A shared core of putative endo-bacterial genera, potentially involved in the nitrogen cycle was found in 80 % of the isolated fungi. The comparison of potential metabolic functions of the putative endo- and exo-communities highlighted the potential essential factors to establish an endosymbiotic relationship, such as the loss of pathways associated with metabolites obtained from the host while maintaining pathways responsible for bacterial survival within the hypha.


Assuntos
Microbiota , Micobioma , Fungos , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Bactérias , Microbiologia do Solo
2.
J Hazard Mater ; 414: 125454, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677317

RESUMO

Poor bioavailability of antibiotics, toxicity, and development of antibiotic-resistant bacteria jeopardize antibiotic treatments. To circumvent these issues, drug delivery using nanocarriers are highlighted to secure the future of antibiotic treatments. This work investigated application of nanocarriers, to prevent and treat bacterial infection, presenting minimal toxicity to the IPEC-J2 cell line. To accomplish this, polymer-based nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and lignin-graft-PLGA (LNP) loaded with enrofloxacin (ENFLX) were synthesized, yielding spherical particles with average sizes of 111.8 ± 0.6 nm (PLGA) and 117.4 ± 0.9 nm (LNP). The releases of ENFLX from PLGA and LNP were modeled by a theoretical diffusion model considering both the NP and dialysis diffusion barriers for drug release. Biocompatible concentrations of ENFLX, enrofloxacin loaded PLGA(Enflx) and LNP(Enflx) were determined based on examination of bacterial inhibition, toxicity, and ROS generation. Biocompatible concentrations were used for treatment of higher- and lower-level infections in IPEC-J2 cells. Prevention of bacterial infection by LNP(Enflx) was enhanced more than 50% compared to ENFLX at lower-level infection. At higher-level infection, PLGA(Enflx) and LNP(Enflx) demonstrated 25% higher prevention of bacteria growth compared to ENFLX alone. The superior treatment achieved by the nanocarried drug is accredited to particle uptake by endocytosis and slow release of the drug intracellularly, preventing rapid bacterial growth inside the cells.


Assuntos
Escherichia coli Enteropatogênica , Escherichia coli O157 , Nanopartículas , Portadores de Fármacos , Enrofloxacina , Ácido Láctico , Tamanho da Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
3.
Waste Manag ; 61: 484-493, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28017551

RESUMO

Two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophillic conditions (37°C) were studied. The aim of this study is to determine optimum Hydraulic Retention Time (HRT) of the two-stage anaerobic digester system for hydrogen and methane production. This paper also discusses the effect of OLR with change in HRT on the system. Four different HRTs of 48, 24, 12, 8h were monitored for acidogenic reactor, which provided OLR of 17.7, 34.8, 70.8, 106gVS/L·d respectively. Two HRTs of 15days and 20days were studied with OLR of 1.24 and 1.76gVS/L·d respectively in methanogenic reactor. Hydrogen production at higher OLR and shorter HRT seemed favorable 106gVS/L·d (8h) in acidogenic reactor system. In methanogenic reactor system HRT of 20day with OLR of 1.24gVS/L·d was found optimum in terms of methane production and organic removal. The result of this study illustrated the optimum HRT of 8h and 20days in acidogenic stage and methanogenic stage for maximum hydrogen and methane production.


Assuntos
Alimentos , Hidrogênio/metabolismo , Metano/biossíntese , Gerenciamento de Resíduos/métodos , Águas Residuárias , Anaerobiose , Biocombustíveis , Reatores Biológicos , Características da Família , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Lactatos/metabolismo , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...