Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526035

RESUMO

Kainate receptors are a subtype of ionotropic glutamate receptors that form transmembrane channels upon binding glutamate. Here, we have investigated the mechanism of partial agonism in heteromeric GluK2/K5 receptors, where the GluK2 and GluK5 subunits have distinct agonist binding profiles. Using single-molecule Förster resonance energy transfer, we found that at the bi-lobed agonist-binding domain, the partial agonist AMPA-bound receptor occupied intermediate cleft closure conformational states at the GluK2 cleft, compared to the more open cleft conformations in apo form and more closed cleft conformations in the full agonist glutamate-bound form. In contrast, there is no significant difference in cleft closure states at the GluK5 agonist-binding domain between the partial agonist AMPA- and full agonist glutamate-bound states. Additionally, unlike the glutamate-bound state, the dimer interface at the agonist-binding domain is not decoupled in the AMPA-bound state. Our findings suggest that partial agonism observed with AMPA binding is mediated primarily due to differences in the GluK2 subunit, highlighting the distinct contributions of the subunits towards activation.

2.
Front Genet ; 12: 694312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413877

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel de novo deleterious variant in GRIN1 (c.1595C>A, p.Pro532His). The clinical phenotype is characterized with developmental encephalopathy, striking stimulus-sensitive myoclonus, and frontal lobe and frontal white matter hypoplasia, with no apparent seizures detected. NMDARs that contained the P532H within the glycine-binding domain of GluN1 with either the GluN2A or GluN2B subunits were evaluated for changes in their pharmacological and biophysical properties, which surprisingly revealed only modest changes in glycine potency but a significant decrease in glutamate potency, an increase in sensitivity to endogenous zinc inhibition, a decrease in response to maximally effective concentrations of agonists, a shortened synaptic-like response time course, a decreased channel open probability, and a reduced receptor cell surface expression. Molecule dynamics simulations suggested that the variant can lead to additional interactions across the dimer interface in the agonist-binding domains, resulting in a more open GluN2 agonist-binding domain cleft, which was also confirmed by single-molecule fluorescence resonance energy transfer measurements. Based on the functional deficits identified, several positive modulators were evaluated to explore potential rescue pharmacology.

3.
Methods Enzymol ; 652: 193-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34059282

RESUMO

Single molecule Förster Resonance Energy Transfer (smFRET) allows us to measure variation in distances between donor and acceptor fluorophores attached to a protein, providing the conformational landscape of the protein with respect to this specific distance. smFRET can be performed on freely diffusing molecules or on tethered molecules. Here, we describe the tethered method used to study ionotropic glutamate receptors, which allows us to track the changes in FRET as a function of time, thus providing information on the conformations sampled and kinetics of conformational changes in the millisecond to second time scale. Strategies for attaching fluorophores to the proteins, methods for acquiring and analyzing the smFRET trajectories, and limitations are discussed.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores de Glutamato/química , Cinética , Conformação Proteica
4.
J Phys Chem B ; 125(18): 4726-4733, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33909422

RESUMO

Motor proteins play an important role in many biological processes and have inspired the development of synthetic analogues. Molecular walkers, such as kinesin, dynein, and myosin V, fulfill a diverse set of functions including transporting cargo along tracks, pulling molecules through membranes, and deforming fibers. The complexity of molecular motors and their environment makes it difficult to model the detailed dynamics of molecular walkers over long time scales. In this work, we present a simple, three-dimensional model for a molecular walker on a bead-spring substrate. The walker is represented by five spherically symmetric particles that interact through common intermolecular potentials and can be simulated efficiently in Brownian dynamics simulations. The movement of motor protein walkers entails energy conversion through ATP hydrolysis while artificial motors typically rely on a local conversion of energy supplied through external fields. We model energy conversion through rate equations for mechanochemical states that couple positional and chemical degrees of freedom and determine the walker conformation through interaction potential parameters. We perform Brownian dynamics simulations for two scenarios: In the first, the model walker transports cargo by walking on a substrate whose ends are fixed. In the second, a tethered motor pulls a mobile substrate chain against a variable force. We measure relative displacements and determine the effects of cargo size and retarding force on the efficiency of the walker. We find that, while the efficiency of our model walker is less than for the biological system, our simulations reproduce trends observed in single-molecule experiments on kinesin. In addition, the model and simulation method presented here can be readily adapted to biological and synthetic systems with multiple walkers.


Assuntos
Cinesinas , Transporte Biológico , Cinesinas/metabolismo , Simulação de Dinâmica Molecular , Movimento (Física)
5.
Proc Natl Acad Sci U S A ; 117(7): 3839-3847, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015122

RESUMO

Allostery can be manifested as a combination of repression and activation in multidomain proteins allowing for fine tuning of regulatory mechanisms. Here we have used single molecule fluorescence resonance energy transfer (smFRET) and molecular dynamics simulations to study the mechanism of allostery underlying negative cooperativity between the two agonists glutamate and glycine in the NMDA receptor. These data show that binding of one agonist leads to conformational flexibility and an increase in conformational spread at the second agonist site. Mutational and cross-linking studies show that the dimer-dimer interface at the agonist-binding domain mediates the allostery underlying the negative cooperativity. smFRET on the transmembrane segments shows that they are tightly coupled in the unliganded and single agonist-bound form and only upon binding both agonists the transmembrane domain explores looser packing which would facilitate activation.


Assuntos
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Dimerização , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glicina/química , Glicina/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Ratos , Receptores de N-Metil-D-Aspartato/genética
6.
Biochim Biophys Acta Biomembr ; 1862(1): 183001, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194959

RESUMO

Kainate receptors, which are glutamate activated excitatory neurotransmitter receptors, predominantly exist as heteromers of GluK2 and GluK5 subunits in the mammalian central nervous system. There are currently no structures of the full-length heteromeric kainate receptors. Here, we have used single molecule FRET to determine the specific arrangement of the GluK2 and GluK5 subunits within the dimer of dimers configuration in a full-length receptor. Additionally, we have also studied the dynamics and conformational heterogeneity of the amino-terminal and agonist-binding domain interfaces associated with the resting and desensitized states of the full-length heteromeric kainate receptor using FRET-based methods. The smFRET data are compared to similar experiments performed on the homomeric kainate receptor to provide insight into the differences in conformational dynamics that distinguish the two functionally. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.


Assuntos
Subunidades Proteicas/química , Receptores de Ácido Caínico/química , Animais , Sítios de Ligação , Linhagem Celular , Humanos , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptor de GluK2 Cainato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...