Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687164

RESUMO

Capillary temperature control during capillary electrophoresis (CE) separations is key for achieving accurate and reproducible results with a broad array of potential methods. However, the difficulty of enabling typical fluid temperature control loops on portable instruments has meant that active capillary temperature control of in situ CE systems has frequently been overlooked. This work describes construction and test of a solid-state device for capillary temperature control that is suitable for inclusion with in situ instruments, including those designed for space missions. Two test articles were built, a thermal mass model (TMM) and a functional model (FM). The TMM demonstrated that temperature gradients could be limited using the proposed control scheme, and that our thermal modeling of the system can be relied on for future adaptations of physical geometries of the system. The FM demonstrated CE analytical performance while under active temperature control and that the device was compatible with the harsh thermal-vacuum environments that might be encountered during space flight.

2.
Geophys Res Lett ; 48(12): e2021GL093013, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34433991

RESUMO

Extreme temperature and pressure conditions on the surface of Venus present formidable technological challenges against performing ground-based seismology. Efficient coupling between the Venusian atmosphere and the solid planet theoretically allows the study of seismically generated acoustic waves using balloons in the upper atmosphere, where conditions are far more clement. However, earthquake detection from a balloon has never been demonstrated. We present the first detection of an earthquake from a balloon-borne microbarometer near Ridgecrest, CA in July 2019 and include a detailed analysis of the dependence of seismic infrasound, as measured from a balloon on earthquake source parameters, topography, and crustal and atmospheric structure. Our comprehensive analysis of seismo-acoustic phenomenology demonstrates that seismic activity is detectable from a high-altitude platform on Earth, and that Rayleigh wave-induced infrasound can be used to constrain subsurface velocities, paving the way for the detection and characterization of such signals on Venus.

3.
J Acoust Soc Am ; 148(4): 2361, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33138515

RESUMO

High-altitude monitoring of low-frequency acoustic waves (infrasound) on Earth has regained prominence in recent years, primarily driven by improvements in light-weight sensor technology and advances in scientific ballooning techniques. Balloon-borne infrasound monitoring is also being proposed as a remote sensing technique for planetary exploration. Contrary to ground-based infrasound monitoring, the infrasound noise background in the stratosphere as measured by a balloon remains uncharacterized and the efficacy of wind noise mitigation filters has not been investigated. In this study, an analysis of pressure data collected using infrasound microbarometers during the flight of a long-duration zero pressure balloon is presented. A dramatic reduction of background noise in the stratosphere is demonstrated and it is shown that wind noise mitigation filters are not effective at reducing wind noise under these conditions. Results from this study demonstrate stratospheric balloons as a low-noise platform for infrasound monitoring and motivate the development of improved noise mitigation tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...