Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(41): E8731-E8740, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973853

RESUMO

Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2Min, a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2Min, 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either (a) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or (b) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.


Assuntos
Genoma Viral , Poliomielite/virologia , Poliovirus/genética , Poliovirus/patogenicidade , Vírion/genética , Montagem de Vírus , Replicação Viral , Células A549 , Células HeLa , Humanos , Fenótipo , Poliomielite/genética , RNA Viral
2.
J Virol ; 90(14): 6174-6186, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27076638

RESUMO

UNLABELLED: The specificity of encapsidation of C-cluster enteroviruses depends on an interaction between capsid proteins and nonstructural protein 2C(ATPase) In particular, residue N252 of poliovirus 2C(ATPase) interacts with VP3 of coxsackievirus A20, in the context of a chimeric virus. Poliovirus 2C(ATPase) has important roles both in RNA replication and encapsidation. In this study, we searched for additional sites in 2C(ATPase), near N252, that are required for encapsidation. Accordingly, segments adjacent to N252 were analyzed by combining triple and single alanine mutations to identify residues required for function. Two triple alanine mutants exhibited defects in RNA replication. The remaining two mutations, located in secondary structures in a predicted three-dimensional model of 2C(ATPase), caused lethal growth phenotypes. Most single alanine mutants, derived from the lethal variants, were either quasi-infectious and yielded variants with wild-type (wt) or temperature-sensitive (ts) growth phenotypes or had a lethal growth phenotype due to defective RNA replication. The K259A mutation, mapping to an α helix in the predicted structure of 2C(ATPase), resulted in a cold-sensitive virus. In vivo protein synthesis and virus production were strikingly delayed at 33°C relative to the wt, suggesting a defect in uncoating. Studies with a reporter virus indicated that this mutant is also defective in encapsidation at 33°C. Cell imaging confirmed a much-reduced production of K259A mature virus at 33°C relative to the wt. In conclusion, we have for the first time linked a cold-sensitive encapsidation defect in 2C(ATPase) (K259A) to a subsequent delay in uncoating of the virus particle at 33°C during the next cycle of infection. IMPORTANCE: Enterovirus morphogenesis, which involves the encapsidation of newly made virion RNA, is a process still poorly understood. Elucidation of this process is important for future drug development for a large variety of diseases caused by these agents. We have previously shown that the specificity of encapsidation of poliovirus and of C-cluster coxsackieviruses, which are prototypes of enteroviruses, is dependent on an interaction of capsid proteins with the multifunctional nonstructural protein 2C(ATPase) In this study, we have searched for residues in poliovirus 2C(ATPase), near a presumed capsid-interacting site, important for encapsidation. An unusual cold-sensitive mutant of 2C(ATPase) possessed a defect in encapsidation at 37°C and subsequently in uncoating during the next cycle of infection at 33°C. These studies not only reveal a new site in 2C(ATPase) that is involved in encapsidation but also identify a link between encapsidation and uncoating.


Assuntos
Capsídeo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação/genética , Poliomielite/patologia , Poliovirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Desenvelopamento do Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mutagênese Sítio-Dirigida , Fenótipo , Poliomielite/genética , Poliomielite/virologia , Poliovirus/enzimologia , RNA Viral/genética , Homologia de Sequência de Aminoácidos , Montagem de Vírus , Replicação Viral
3.
Virology ; 484: 80-85, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26074065

RESUMO

Enteroviruses (EV) uridylylate a peptide, VPg, as the first step in their replication. VPgpUpU, found free in infected cells, serves as the primer for RNA elongation. The abilities of four polymerases (3D(pol)), from EV-species A-C, to uridylylate VPgs that varied by up to 60% of their residues were compared. Each 3D(pol) was able to uridylylate all five VPgs using polyA RNA as template, while showing specificity for its own genome encoded peptide. All 3D(pol) uridylylated a consensus VPg representing the physical chemical properties of 31 different VPgs. Thus the residues required for uridylylation and the enzymatic mechanism must be similar in diverse EV. As VPg-binding sites differ in co-crystal structures, the reaction is probably done by a second 3D(pol) molecule. The conservation of polymerase residues whose mutation reduces uridylylation but not RNA elongation is compared.


Assuntos
Enterovirus/fisiologia , Processamento de Proteína Pós-Traducional , Uridina Trifosfato/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Enterovirus/enzimologia , Humanos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Proteínas não Estruturais Virais/química
4.
mBio ; 6(2)2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25827413

RESUMO

UNLABELLED: Codon pair bias (CPB), which has been observed in all organisms, is a neglected genomic phenomenon that affects gene expression. CPB results from synonymous codons that are paired more or less frequently in ORFeomes regardless of codon bias. The effect of an individual codon pair change is usually small, but when it is amplified by large-scale genome recoding, strikingly altered biological phenotypes are observed. The utility of codon pair bias in the development of live attenuated vaccines was recently demonstrated by recodings of poliovirus (a positive-strand RNA virus) and influenza virus (a negative-strand segmented RNA virus). Here, the L gene of vesicular stomatitis virus (VSV), a nonsegmented negative-sense RNA virus, was partially recoded based on codon pair bias. Totals of 858 and 623 silent mutations were introduced into a 5'-terminal segment of the viral L gene (designated L1) to create sequences containing either overrepresented or underrepresented codon pairs, designated L1(sdmax) and L1(min), respectively. Analysis revealed that recombinant VSV containing the L1(min) sequence could not be recovered, whereas the virus with the sdmax sequence showed a modest level of attenuation in cell culture. More strikingly, in mice the L1(sdmax) virus was almost as immunogenic as the parental strain but highly attenuated. Taken together, these results open a new road to attain a balance between VSV virulence and immunogenicity, which could serve as an example for the attenuation of other negative-strand, nonsegmented RNA viruses. IMPORTANCE: Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus in the order Mononegavirales. A wide range of human pathogens belong to this family. Using a unique computer algorithm and large-scale genome synthesis, we attempted to develop a live attenuated vaccine strain for VSV, which could be used as an antigen delivery platform for humans. Recombinant VSVs with distinct codon pair biases were rationally designed, constructed, and analyzed in both cell culture and an animal model. One such recombinant virus, L1(sdmax), contained extra overrepresented codon pairs in its L gene open reading frame (ORF) and showed promise as an effective vaccine candidate because of a favorable balance between virulence and immunogenicity. Our study not only contributes to the understanding of the underlying mechanism of codon pair bias but also may facilitate the development of live attenuated vaccines for other viruses in the order Mononegavirales.


Assuntos
Engenharia de Proteínas , RNA Polimerase Dependente de RNA/metabolismo , Mutação Silenciosa , Vesiculovirus/imunologia , Vesiculovirus/fisiologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Animais , Desenho Assistido por Computador , Masculino , Camundongos Endogâmicos BALB C , RNA Polimerase Dependente de RNA/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vesiculovirus/genética , Vesiculovirus/crescimento & desenvolvimento , Proteínas Virais/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação , Virulência
5.
Virus Res ; 206: 12-26, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25592245

RESUMO

Plus strand RNA viruses use different mechanisms to initiate the synthesis of their RNA chains. The Picornaviridae family constitutes a large group of plus strand RNA viruses that possess a small terminal protein (VPg) covalently linked to the 5'-end of their genomes. The RNA polymerases of these viruses use VPg as primer for both minus and plus strand RNA synthesis. In the first step of the initiation reaction the RNA polymerase links a UMP to the hydroxyl group of a tyrosine in VPg using as template a cis-replicating element (cre) positioned in different regions of the viral genome. In this review we will summarize what is known about the initiation reaction of protein-primed RNA synthesis by the RNA polymerases of the Picornaviridae. As an example we will use the RNA polymerase of poliovirus, the prototype of Picornaviridae. We will also discuss models of how these nucleotidylylated protein primers might be used, together with viral and cellular replication proteins and other cis-replicating RNA elements, during minus and plus strand RNA synthesis.


Assuntos
Picornaviridae/fisiologia , RNA Viral/metabolismo , Iniciação da Transcrição Genética , Replicação Viral , Modelos Biológicos , Conformação de Ácido Nucleico , Ligação Proteica , Dobramento de RNA , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
6.
Microbiol Mol Biol Rev ; 78(3): 418-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25184560

RESUMO

The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.


Assuntos
Infecções por Picornaviridae/virologia , Picornaviridae/fisiologia , Montagem de Vírus , Animais , Antivirais/farmacologia , Capsídeo/fisiologia , Capsídeo/ultraestrutura , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Morfogênese , Picornaviridae/efeitos dos fármacos , Picornaviridae/ultraestrutura , RNA Viral/fisiologia
7.
PLoS Pathog ; 10(4): e1004052, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722315

RESUMO

Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles.


Assuntos
Capsídeo/metabolismo , Enterovirus Humano C/fisiologia , Infecções por Enterovirus/metabolismo , Glutationa/metabolismo , Montagem de Vírus/fisiologia , Glutationa/antagonistas & inibidores , Células HeLa , Humanos
8.
PLoS Pathog ; 10(4): e1004039, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722756

RESUMO

Enteroviruses (family of the Picornaviridae) cover a large group of medically important human pathogens for which no antiviral treatment is approved. Although these viruses have been extensively studied, some aspects of the viral life cycle, in particular morphogenesis, are yet poorly understood. We report the discovery of TP219 as a novel inhibitor of the replication of several enteroviruses, including coxsackievirus and poliovirus. We show that TP219 binds directly glutathione (GSH), thereby rapidly depleting intracellular GSH levels and that this interferes with virus morphogenesis without affecting viral RNA replication. The inhibitory effect on assembly was shown not to depend on an altered reducing environment. Using TP219, we show that GSH is an essential stabilizing cofactor during the transition of protomeric particles into pentameric particles. Sequential passaging of coxsackievirus B3 in the presence of low GSH-levels selected for GSH-independent mutants that harbored a surface-exposed methionine in VP1 at the interface between two protomers. In line with this observation, enteroviruses that already contained this surface-exposed methionine, such as EV71, did not rely on GSH for virus morphogenesis. Biochemical and microscopical analysis provided strong evidence for a direct interaction between GSH and wildtype VP1 and a role for this interaction in localizing assembly intermediates to replication sites. Consistently, the interaction between GSH and mutant VP1 was abolished resulting in a relocalization of the assembly intermediates to replication sites independent from GSH. This study thus reveals GSH as a novel stabilizing host factor essential for the production of infectious enterovirus progeny and provides new insights into the poorly understood process of morphogenesis.


Assuntos
Capsídeo/metabolismo , Enterovirus Humano B/fisiologia , Infecções por Enterovirus/metabolismo , Glutationa/metabolismo , RNA Viral/biossíntese , Replicação Viral/fisiologia , Animais , Chlorocebus aethiops , Infecções por Enterovirus/genética , Glutationa/genética , Células HeLa , Humanos , Mutação , RNA Viral/genética , Células Vero
9.
J Gen Virol ; 95(Pt 6): 1255-1265, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24558221

RESUMO

The morphogenesis of viruses belonging to the genus Enterovirus in the family Picornaviridae is still poorly understood despite decades-long investigations. However, we recently provided evidence that 2C(ATPase) gives specificity to poliovirus encapsidation through an interaction with capsid protein VP3. The polypeptide 2C(ATPase) is a highly conserved non-structural protein of enteroviruses with important roles in RNA replication, encapsidation and uncoating. We have identified a site (K279/R280) near the C terminus of the polypeptide that is required for morphogenesis. The aim of the current project was to search for additional functional sites near the C terminus of the 2C(ATPase) polypeptide, with particular interest in those that are required for encapsidation. We selected for analysis a cysteine-rich site of the polypeptide and constructed four mutants in which cysteines or a histidine was changed to an alanine. The RNA transcripts were transfected into HeLa cells yielding two lethal, one temperature-sensitive and one quasi-infectious mutants. All four mutants exhibited normal protein translation in vitro and three of them possessed severe RNA replication defects. The quasi-infectious mutant (C286A) yielded variants with a pseudo-reversion at the original site (A286D), but some also contained one additional mutation: A138V or M293V. The temperature-sensitive mutant (C272A/H273A) exhibited an encapsidation and possibly also an uncoating defect at 37 °C. Variants of this mutant revealed suppressor mutations at three different sites in the 2C(ATPase) polypeptide: A138V, M293V and K295R. We concluded that the cysteine-rich site near the C terminus of 2C(ATPase) is involved in encapsidation, possibly through an interaction with an upstream segment located between boxes A and B of the nucleotide-binding domain.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Poliovirus/crescimento & desenvolvimento , Poliovirus/fisiologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/genética , Sequência Conservada , Genes Virais , Células HeLa , Humanos , Dados de Sequência Molecular , Morfogênese/genética , Mutação , Fenótipo , Poliovirus/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , RNA Viral/biossíntese , RNA Viral/genética , Homologia de Sequência de Aminoácidos , Supressão Genética , Proteínas não Estruturais Virais/genética , Montagem de Vírus/genética
10.
Proc Natl Acad Sci U S A ; 109(36): 14301-7, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22886087

RESUMO

Genomes of RNA viruses contain multiple functional RNA elements required for translation or RNA replication. We use unique approaches to identify functional RNA elements in the coding sequence of poliovirus (PV), a plus strand RNA virus. The general method is to recode large segments of the genome using synonymous codons, such that protein sequences, codon use, and codon pair bias are conserved but the nucleic acid sequence is changed. Such recoding does not affect the growth of PV unless it destroys the sequence/structure of a functional RNA element. Using genetic analyses and a method called "signal location search," we detected two unique functionally redundant RNA elements (α and ß), each about 75 nt long and separated by 150 nt, in the 3'-terminal coding sequence of RNA polymerase, 3D(pol). The presence of wild type (WT) α or ß was sufficient for the optimal growth of PV, but the alteration of both segments in the same virus yielded very low titers and tiny plaques. The nucleotide sequences and predicted RNA structures of α and ß have no apparent resemblance to each other. In α, we narrowed down the functional domain to a 48-nt-long, highly conserved segment. The primary determinant of function in ß is a stable and highly conserved hairpin. Reporter constructs showed that the α- and ß-segments are required for RNA replication. Recoding offers a unique and effective method to search for unknown functional RNA elements in coding sequences of RNA viruses, particularly if the signals are redundant in function.


Assuntos
Desenho Assistido por Computador , RNA Polimerases Dirigidas por DNA/genética , Engenharia Genética/métodos , Poliovirus/genética , RNA Viral/genética , Replicação Viral/genética , Poliovirus/crescimento & desenvolvimento , Estrutura Terciária de Proteína/genética
11.
J Virol ; 86(18): 9964-75, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22761387

RESUMO

Polypeptide 2C(ATPase) is one of the most thoroughly studied but least understood proteins in the life cycle of poliovirus. Within the protein, multiple functional domains important for uncoating, host cell membrane alterations, and RNA replication and encapsidation have previously been identified. In this study, charged to alanine-scanning mutagenesis was used to generate conditional-lethal mutations in hitherto-uncharacterized domains of the 2C(ATPase) polypeptide, particularly those involved in morphogenesis. Adjacent or clustered charged amino acids (2 to 4), scattered along the 2C(ATPase) coding sequence, were replaced with alanines. RNA transcripts of mutant poliovirus cDNA clones were transfected into HeLa cells. Subsequently, 10 lethal, 1 severely temperature-sensitive, 2 quasi-infectious, and 3 wild type-like mutants were identified. Using a luciferase-containing reporter virus, we demonstrated RNA replication defects in all lethal and quasi-infectious mutants. Temperature-sensitive mutants were defective in RNA replication only at the restricted temperatures. Furthermore, we characterized a quasi-infectious mutant (K(6)A/K(7)A) that produced a suppressor mutation (G(1)R) and a novel 2B^2C(ATPase) cleavage site (Q^R). Surprisingly, this cleavage site mutation did not interfere with normal processing of the polyprotein. These mutants have led to the identification of several new sites within the 2C(ATPase) polypeptide that are required for RNA replication. In addition, analysis of the suppressor mutants has revealed a new domain near the C terminus of 2C(ATPase) that is involved in encapsidation, possibly achieved through interaction with an amino acid sequence between NTP binding motifs A and B of 2C(ATPase). Most importantly, the identification of suppressor mutations in both 2C(ATPase) and the capsid domains (VP1 and VP3) of poliovirus has confirmed that an interaction between 2C(ATPase) and capsid proteins is involved in viral morphogenesis.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Poliovirus/genética , Poliovirus/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologia , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas do Capsídeo/química , Proteínas de Transporte/química , Sequência Conservada , Células HeLa , Humanos , Dados de Sequência Molecular , Morfogênese , Mutagênese Sítio-Dirigida , Fenótipo , Poliovirus/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Proteínas não Estruturais Virais/química , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
12.
BMC Bioinformatics ; 13 Suppl 13: S9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23320474

RESUMO

BACKGROUND: Analysis of large sets of biological sequence data from related strains or organisms is complicated by superficial redundancy in the set, which may contain many members that are identical except at one or two positions. Thus a new method, based on deriving physicochemical property (PCP)-consensus sequences, was tested for its ability to generate reference sequences and distinguish functionally significant changes from background variability. METHODS: The PCP consensus program was used to automatically derive consensus sequences starting from sequence alignments of proteins from Flaviviruses (from the Flavitrack database) and human enteroviruses, using a five dimensional set of Eigenvectors that summarize over 200 different scalar values for the PCPs of the amino acids. A PCP-consensus protein of a Dengue virus envelope protein was produced recombinantly and tested for its ability to bind antibodies to strains using ELISA. RESULTS: PCP-consensus sequences of the flavivirus family could be used to classify them into five discrete groups and distinguish areas of the envelope proteins that correlate with host specificity and disease type. A multivalent Dengue virus antigen was designed and shown to bind antibodies against all four DENV types. A consensus enteroviral VPg protein had the same distinctive high pKa as wild type proteins and was recognized by two different polymerases. CONCLUSIONS: The process for deriving PCP-consensus sequences for any group of aligned similar sequences, has been validated for sequences with up to 50% diversity. Ongoing projects have shown that the method identifies residues that significantly alter PCPs at a given position, and might thus cause changes in function or immunogenicity. Other potential applications include deriving target proteins for drug design and diagnostic kits.


Assuntos
Antígenos Virais/química , Antivirais/química , Sequência Consenso , Desenho de Fármacos , Análise de Sequência de Proteína , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Antígenos Virais/imunologia , Dengue/imunologia , Flavivirus/imunologia , Produtos do Gene env/imunologia , Humanos , Dados de Sequência Molecular , Proteínas do Envelope Viral/imunologia
13.
J Virol ; 86(4): 1999-2010, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156535

RESUMO

Polioviruses (PVs) carrying a reporter gene are useful tools for studies of virus replication, particularly if the viral chimeras contain the polyprotein that provides all of the proteins necessary for a complete replication cycle. Replication in HeLa cells of a previously constructed poliovirus expressing the gene for Renilla luciferase (RLuc) fused to the N terminus of the polyprotein H(2)N-RLuc-P1-P2-P3-COOH (P1, structural domain; P2 and P3, nonstructural domains) led to the deletion of RLuc after only one passage. Here we describe a novel poliovirus chimera that expresses Gaussia luciferase (GLuc) inserted into the polyprotein between P1 and P2 (N(2)H-P1-GLuc-P2-P3-COOH). This chimera, termed PV-GLuc, replicated to 10% of wild-type yield. The reporter signal was fully retained for three passages and then gradually lost. After six passages the signal was barely detectable. On further passages, however, the GLuc signal reappeared, and after eight passages it had reached the same levels observed with the original PV-GLuc at the first passage. We demonstrated that this surprising observation was due to coevolution of defective interfering (DI) particles that had lost part or all of the capsid coding sequence (ΔP1-GLuc-P2-P3) and wild-type-like viruses that had lost the GLuc sequence (P1-P2-P3). When used at low passage, PV-GLuc is an excellent tool for studying aspects of genome replication and morphogenesis. The GLuc protein was secreted from mammalian cells but, in agreement with published data, was not secreted from PV-GLuc-infected cells due to poliovirus-induced inhibition of cellular protein secretion. Published evidence indicates that individual expression of enterovirus polypeptide 3A, 2B, or 2BC in COS-1 cells strongly inhibits host protein secretion. In HeLa cells, however, expression of none of the poliovirus polypeptides, either singly or in pairs, inhibited GLuc secretion. Thus, inhibition of GLuc secretion in PV-infected HeLa cells is likely a result of the interaction between several viral and cellular proteins that are different from those in COS-1 cells.


Assuntos
Evolução Biológica , Crustáceos/enzimologia , Vírus Defeituosos/genética , Expressão Gênica , Luciferases/genética , Poliovirus/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Crustáceos/genética , Vírus Defeituosos/metabolismo , Genes Reporter , Luciferases/metabolismo , Poliovirus/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
14.
Annu Rev Microbiol ; 65: 583-609, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21756105

RESUMO

Owing to known genome sequences, modern strategies of DNA synthesis have made it possible to recreate in principle all known viruses independent of natural templates. We describe the first synthesis of a virus (poliovirus) in 2002 that was accomplished outside living cells. We comment on the reaction of laypeople and scientists to the work, which shaped the response to de novo syntheses of other viruses. We discuss those viruses that have been synthesized since 2002, among them viruses whose precise genome sequence had to be established by painstakingly stitching together pieces of sequence information, and viruses involved in zoonosis. Synthesizing viral genomes provides a powerful tool for studying gene function and the pathogenic potential of these organisms. It also allows modification of viral genomes to an extent hitherto unthinkable. Recoding of poliovirus and influenza virus to develop new vaccine candidates and refactoring the phage T7 DNA genome are discussed as examples.


Assuntos
Bacteriófago T7/química , DNA Viral/síntese química , Orthomyxoviridae/química , Poliovirus/química , RNA Viral/síntese química , Bacteriófago T7/genética , Bacteriófago T7/fisiologia , DNA Viral/genética , Genes Sintéticos , Genoma Viral , Humanos , Orthomyxoviridae/genética , Orthomyxoviridae/fisiologia , Poliovirus/genética , Poliovirus/fisiologia , RNA Viral/genética , Replicação Viral
15.
PLoS Pathog ; 6(8): e1001066, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20865167

RESUMO

In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV), is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase) in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20) and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase) of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase) and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20) were blocked in encapsidation (no virus after blind passages) but could be rescued if the capsid and 2C(ATPase) coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i) genome replication is known to be stringently linked to translation, (ii) morphogenesis is known to be stringently linked to genome replication, (iii) newly synthesized 2C(ATPase) is an essential component of the replication complex, and (iv) 2C(ATPase) has specific affinity to capsid protein(s). These conditions lead to morphogenesis at the site where newly synthesized genomes emerge from the replication complex.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Enterovirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Proteínas do Capsídeo/genética , Proteínas de Transporte/genética , Células HeLa , Humanos , Imunoprecipitação , Poliovirus/genética , Poliovirus/metabolismo , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
16.
Peptides ; 31(8): 1441-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20441784

RESUMO

Picornaviruses have a 22-24 amino acid peptide, VPg, bound covalently at the 5' end of their RNA, that is essential for replication. VPgs are uridylylated at a conserved tyrosine to form VPgpU, the primer of RNA synthesis by the viral polymerase. This first complete structure for any uridylylated VPg, of poliovirus type 1 (PV1)-VPgpU, shows that conserved amino acids in VPg stabilize the bound UMP, with the uridine atoms involved in base pairing and chain elongation projected outward. Comparing this structure to PV1-VPg and partial structures of VPg/VPgpU from other picornaviruses suggests that enteroviral polymerases require a more stable VPg structure than does the distantly related aphthovirus, foot and mouth disease virus (FMDV). The glutamine residue at the C-terminus of PV1-VPgpU lies in back of the uridine base and may stabilize its position during chain elongation and/or contribute to base specificity. Under in vivo-like conditions with the authentic cre(2C) hairpin RNA and Mg(2+), 5-methylUTP cannot compete with UTP for VPg uridylyation in an in vitro uridylyation assay, but both nucleotides are equally incorporated by PV1-polymerase with Mn(2+) and a poly-A RNA template. This indicates the 5 position is recognized under in vivo conditions. The compact VPgpU structure docks within the active site cavity of the PV-polymerase, close to the position seen for the fragment of FMDV-VPgpU with its polymerase. This structure could aid in design of novel enterovirus inhibitors, and stabilization upon uridylylation may also be pertinent for post-translational uridylylation reactions that underlie other biological processes.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Poliovirus/fisiologia , Nucleotídeos de Uracila/química , Proteínas Virais/química , Sequência de Aminoácidos , Antivirais/química , Ligação Competitiva , Desenho de Fármacos , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Poliovirus/crescimento & desenvolvimento , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Nucleotídeos de Uracila/metabolismo , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/metabolismo , Uridina Trifosfato/farmacologia , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
17.
Biochim Biophys Acta ; 1789(9-10): 495-517, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19781674

RESUMO

The RNA genomes of plus-strand RNA viruses have the ability to form secondary and higher-order structures that contribute to their stability and to their participation in inter- and intramolecular interactions. Those structures that are functionally important are called cis-acting RNA elements because their functions cannot be complemented in trans. They can be involved not only in RNA/RNA interactions but also in binding of viral and cellular proteins during the complex processes of translation, RNA replication and encapsidation. Most viral cis-acting RNA elements are located in the highly structured 5'- and 3'-nontranslated regions of the genomes but sometimes they also extend into the adjacent coding sequences. In addition, some cis-acting RNA elements are embedded within the coding sequences far away from the genomic ends. Although the functional importance of many of these structures has been confirmed by genetic and biochemical analyses, their precise roles are not yet fully understood. In this review we have summarized what is known about cis-acting RNA elements in nine families of human and animal plus-strand RNA viruses with an emphasis on the most thoroughly characterized virus families, the Picornaviridae and Flaviviridae.


Assuntos
Vírus de RNA/genética , RNA Viral/genética , RNA/química , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Elementos Facilitadores Genéticos , Flavivirus/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Picornaviridae/metabolismo
18.
J Virol ; 81(20): 11256-66, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17686844

RESUMO

Lethal mutagenesis is the mechanism of action of ribavirin against poliovirus (PV) and numerous other RNA viruses. However, there is still considerable debate regarding the mechanism of action of ribavirin against a variety of RNA viruses. Here we show by using T7 RNA polymerase-mediated production of PV genomic RNA, PV polymerase-catalyzed primer extension, and cell-free PV synthesis that a pyrimidine ribonucleoside triphosphate analogue (rPTP) with ambiguous base-pairing capacity is an efficient mutagen of the PV genome. The in vitro incorporation properties of rPTP are superior to ribavirin triphosphate. We observed a log-linear relationship between virus titer reduction and the number of rPMP molecules incorporated. A PV genome encoding a high-fidelity polymerase was more sensitive to rPMP incorporation, consistent with diminished mutational robustness of high-fidelity PV. The nucleoside (rP) did not exhibit antiviral activity in cell culture, owing to the inability of rP to be converted to rPMP by cellular nucleotide kinases. rP was also a poor substrate for herpes simplex virus thymidine kinase. The block to nucleoside phosphorylation could be bypassed by treatment with the P nucleobase, which exhibited both antiviral activity and mutagenesis, presumably a reflection of rP nucleotide formation by a nucleotide salvage pathway. These studies provide additional support for lethal mutagenesis as an antiviral strategy, suggest that rPMP prodrugs may be highly efficacious antiviral agents, and provide a new tool to determine the sensitivity of RNA virus genomes to mutagenesis as well as interrogation of the impact of mutational load on the population dynamics of these viruses.


Assuntos
Antivirais , Mutagênese/efeitos dos fármacos , Poliovirus/genética , Pirimidinas/farmacologia , RNA Viral/biossíntese , Genoma Viral , Mutagênicos/farmacologia , Nucleotídeos de Pirimidina/metabolismo , Nucleotídeos de Pirimidina/farmacologia , Nucleotídeos de Pirimidina/uso terapêutico , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico
19.
J Gen Virol ; 88(Pt 8): 2259-2267, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17622630

RESUMO

All of the non-structural proteins of poliovirus, including their processing precursors, are involved in the replication of the viral RNA genome. These proteins assemble into a replication complex, which also contains the viral RNA and cellular factors. An understanding of how these viral proteins interact with each other would enhance our understanding of the molecular events occurring during poliovirus infection of the cell. Previously, we have employed the yeast two-hybrid system to construct two separate linkage maps for the polioviral P2 and P3 proteins, respectively. In the present study, we have searched for interacting pairs between the P2 and P3 proteins in a similar inducible yeast two-hybrid system. Although, the primary functions of the proteolytic products of the P2 and P3 domains of the polyprotein in the viral life cycle are different, we observed significant interactions between 2C(ATPase) and 3AB; 2A(pro) and 3A, 3C(pro) or 3D(pol); 2B and 3A or 3AB. All of the interactions were measured in the yeast two-hybrid system by exchanging the interacting pairs on the transcription-activation and DNA-binding constructs. In vitro GST pull-down assay suggested that the 2C(ATPase)/3AB interaction involves both ionic and hydrophobic contacts between the two proteins. The possible biological implication of the interactions observed in the yeast two-hybrid system will be discussed.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Poliomielite/virologia , Poliovirus/genética , Proteínas não Estruturais Virais/metabolismo , Proteases Virais 3C , Cisteína Endopeptidases/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Membrana/metabolismo , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/metabolismo , Leveduras
20.
J Virol ; 81(18): 10017-28, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17609276

RESUMO

The 5' nontranslated region of poliovirus RNA contains two highly structured regions, the cloverleaf (CL) and the internal ribosomal entry site (IRES). A cellular protein, the poly(rC) binding protein (PCBP), has been reported to interact with the CL either alone or in combination with viral protein 3CD(pro). The formation of the ternary complex is essential for RNA replication and, hence, viral proliferation. PCBP also interacts with stem-loop IV of the IRES, an event critical for the initiation of cap-independent translation. Until recently, no special function was assigned to a spacer region (nucleotides [nt] 89 to 123) located between the CL and the IRES. However, on the basis of our discovery that this region strongly affects the neurovirulent phenotype of poliovirus, we have embarked upon genetic and biochemical analyses of the spacer region, focusing on two clusters of C residues (C(93-95) and C(98-100)) that are highly conserved among entero- and rhinoviruses. Replacement of all six C residues with A residues had no effect on translation in vitro but abolished RNA replication, leading to a lethal growth phenotype of the virus in HeLa cells. Mutation of the first group of C residues (C(93-95)) resulted in slower viral growth, whereas the C(98-100)A change had no significant effect on viability. Genetic analyses of the C-rich region by extensive mutagenesis and analyses of revertants revealed that two consecutive C residues (C(94-95)) were sufficient to promote normal growth of the virus. However, there was a distinct position effect of the preferred C residues. A 142-nt-long 5'-terminal RNA fragment including the CL and spacer sequences efficiently bound PCBP, whereas no PCBP binding was observed with the CL (nt 1 to 88) alone. Binding of PCBP to the 142-nt fragment was completely ablated after the two C clusters in the spacer were mutated to A clusters. In contrast, the same mutations had no effect on the binding of 3CD(pro) to the 142-nt RNA fragment. Stepwise replacement of the C residues with A residues resulted in impaired replication that covaried with weaker binding of PCBP in vitro. We conclude that PCBP has little, if any, binding affinity for the CL itself (nt 1 to 88) but requires additional nucleotides downstream of the CL for its function as an essential cofactor in poliovirus RNA replication. These data reveal a new essential function of the spacer between the CL and the IRES in poliovirus proliferation.


Assuntos
Regiões 5' não Traduzidas/metabolismo , Poliovirus/metabolismo , Poli C/metabolismo , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/fisiologia , Regiões 5' não Traduzidas/genética , Sítios de Ligação/genética , Células HeLa , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Poliovirus/genética , Poli C/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Rhinovirus/genética , Rhinovirus/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...