Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1208282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965329

RESUMO

Introduction: Most childhood-onset SLE patients (cSLE) develop lupus nephritis (cLN), but only a small proportion achieve complete response to current therapies. The prognosis of children with LN and end-stage renal disease is particularly dire. Mortality rates within the first five years of renal replacement therapy may reach 22%. Thus, there is urgent need to decipher and target immune mechanisms that drive cLN. Despite the clear role of autoantibody production in SLE, targeted B cell therapies such as rituximab (anti-CD20) and belimumab (anti-BAFF) have shown only modest efficacy in cLN. While many studies have linked dysregulation of germinal center formation to SLE pathogenesis, other work supports a role for extrafollicular B cell activation in generation of pathogenic antibody secreting cells. However, whether extrafollicular B cell subsets and their T cell collaborators play a role in specific organ involvement in cLN and/or track with disease activity remains unknown. Methods: We analyzed high-dimensional mass cytometry and gene expression data from 24 treatment naïve cSLE patients at the time of diagnosis and longitudinally, applying novel computational tools to identify abnormalities associated with clinical manifestations (cLN) and disease activity (SLEDAI). Results: cSLE patients have an extrafollicular B cell expansion signature, with increased frequency of i) DN2, ii) Bnd2, iii) plasmablasts, and iv) peripheral T helper cells. Most importantly, we discovered that this extrafollicular signature correlates with disease activity in cLN, supporting extrafollicular T/B interactions as a mechanism underlying pediatric renal pathogenesis. Discussion: This study integrates established and emerging themes of extrafollicular B cell involvement in SLE by providing evidence for extrafollicular B and peripheral T helper cell expansion, along with elevated type 1 IFN activation, in a homogeneous cohort of treatment-naïve cSLE patients, a point at which they should display the most extreme state of their immune dysregulation.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Criança , Linfócitos B , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores
2.
Front Immunol ; 10: 2572, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803176

RESUMO

Targeting CD8+ T cells to recurrent tumor-specific mutations can profoundly contribute to cancer treatment. Some of these mutations are potential tumor antigens although they can be displayed by non-spliced epitopes only in a few patients, because of the low affinity of the mutated non-spliced peptides for the predominant HLA class I alleles. Here, we describe a pipeline that uses the large sequence variety of proteasome-generated spliced peptides and identifies spliced epitope candidates, which carry the mutations and bind the predominant HLA-I alleles with high affinity. They could be used in adoptive T cell therapy and other anti-cancer immunotherapies for large cohorts of cancer patients. As a proof of principle, the application of this pipeline led to the identification of a KRAS G12V mutation-carrying spliced epitope candidate, which is produced by proteasomes, transported by TAPs and efficiently presented by the most prevalent HLA class I molecules, HLA-A*02:01 complexes.


Assuntos
Processamento Alternativo , Biologia Computacional , Mapeamento de Epitopos , Epitopos/genética , Antígenos HLA-A/genética , Neoplasias/genética , Neoplasias/imunologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Sequência de Aminoácidos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Sítios de Ligação , Biologia Computacional/métodos , Epitopos/química , Epitopos/imunologia , Regulação Neoplásica da Expressão Gênica , Antígenos HLA-A/química , Antígenos HLA-A/imunologia , Humanos , Modelos Moleculares , Conformação Molecular , Neoplasias/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Relação Estrutura-Atividade
3.
J Theor Biol ; 455: 86-96, 2018 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-30017944

RESUMO

The relation between design principles of signaling network motifs and their robustness against intrinsic noise still remains illusive. In this work we investigate the role of cascading for coping with intrinsic noise due to stochasticity in molecular reactions. We use stochastic approaches to quantify fluctuations in the terminal kinase of phosphorylation-dephosphorylation cascade motifs and demonstrate that cascading highly affects these fluctuations. We show that this purely stochastic effect can be explained by time-varying sequestration of upstream kinase molecules. In particular, we discuss conditions on time scales and parameter regimes which lead to a reduction of output fluctuations. Our results are put into biological context by adapting rate parameters of our modeling approach to biologically feasible ranges for general binding-unbinding and phosphorylation-dephosphorylation mechanisms. Overall, this study reveals a novel role of stochastic sequestration for dynamic noise filtering in signaling cascade motifs.


Assuntos
Simulação por Computador , Modelos Biológicos , Fosfotransferases/metabolismo , Transdução de Sinais , Animais , Humanos , Fosforilação , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...