Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 19449-19457, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859079

RESUMO

Germanium-on-Silicon (Ge-on-Si) avalanche photodiodes (APDs) are of considerable interest as low intensity light detectors for emerging applications. The Ge absorption layer detects light at wavelengths up to ≈ 1600 nm with the Si acting as an avalanche medium, providing high gain with low excess avalanche noise. Such APDs are typically used in waveguide configurations as growing a sufficiently thick Ge absorbing layer is challenging. Here, we report on a new vertically illuminated pseudo-planar Ge-on-Si APD design utilizing a 2 µm thick Ge absorber and a 1.4 µm thick Si multiplication region. At a wavelength of 1550 nm, 50 µm diameter devices show a responsivity of 0.41 A/W at unity gain, a maximum avalanche gain of 101 and an excess noise factor of 3.1 at a gain of 20. This excess noise factor represents a record low noise for all configurations of Ge-on-Si APDs. These APDs can be inexpensively manufactured and have potential integration in silicon photonic platforms allowing use in a variety of applications requiring high-sensitivity detectors at wavelengths around 1550 nm.

2.
Sci Rep ; 12(1): 13091, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906251

RESUMO

The measurement of tiny variations in local gravity enables the observation of subterranean features. Gravimeters have historically been extremely expensive instruments, but usable gravity measurements have recently been conducted using MEMS (microelectromechanical systems) sensors. Such sensors are cheap to produce, since they rely on the same fabrication techniques used to produce mobile phone accelerometers. A significant challenge in the development of MEMS gravimeters is maintaining stability over long time periods, which is essential for long term monitoring applications. A standard way to demonstrate gravimeter stability and sensitivity is to measure the periodic elastic distortion of the Earth due to tidal forces-the Earth tides. Here, a 19 day measurement of the Earth tides, with a correlation coefficient to the theoretical signal of 0.975, has been presented. This result demonstrates that this MEMS gravimeter is capable of conducting long-term time-lapse gravimetry, a functionality essential for applications such as volcanology.

3.
Sci Rep ; 11(1): 18825, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552147

RESUMO

The development of three-dimensional architectures in semiconductor technology is paving the way to new device concepts for various applications, from quantum computing to single photon avalanche detectors. In most cases, such structures are achievable only under far-from-equilibrium growth conditions. Controlling the shape and morphology of the growing structures, to meet the strict requirements for an application, is far more complex than in close-to-equilibrium cases. The development of predictive simulation tools can be essential to guide the experiments. A versatile phase-field model for kinetic crystal growth is presented and applied to the prototypical case of Ge/Si vertical microcrystals grown on deeply patterned Si substrates. These structures, under development for innovative optoelectronic applications, are characterized by a complex three-dimensional set of facets essentially driven by facet competition. First, the parameters describing the kinetics on the surface of Si and Ge are fitted on a small set of experimental results. To this goal, Si vertical microcrystals have been grown, while for Ge the fitting parameters have been obtained from data from the literature. Once calibrated, the predictive capabilities of the model are demonstrated and exploited for investigating new pattern geometries and crystal morphologies, offering a guideline for the design of new 3D heterostructures. The reported methodology is intended to be a general approach for investigating faceted growth under far-from-equilibrium conditions.

4.
Opt Lett ; 45(23): 6406-6409, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258823

RESUMO

The performance of planar geometry Ge-on-Si single-photon avalanche diode detectors of 26µm diameter is presented. Record low dark count rates are observed, remaining less than 100 K counts per second at 6.6% excess bias and 125 K. Single-photon detection efficiencies are found to be up to 29.4%, and are shown to be temperature insensitive. These performance characteristics lead to a significantly reduced noise equivalent power (NEP) of 7.7×10-17WHz-12 compared to prior planar devices, and represent a two orders of magnitude reduction in NEP compared to previous Ge-on-Si mesa devices of a comparable diameter. Low jitter values of 134±10ps are demonstrated.

5.
Opt Express ; 28(15): 22186-22199, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752485

RESUMO

A novel spectroscopy technique to enable the rapid characterization of discrete mid-infrared integrated photonic waveguides is demonstrated. The technique utilizes lithography patterned polymer blocks that absorb light strongly within the molecular fingerprint region. These act as integrated waveguide detectors when combined with an atomic force microscope that measures the photothermal expansion when infrared light is guided to the block. As a proof of concept, the technique is used to experimentally characterize propagation loss and grating coupler response of Ge-on-Si waveguides at wavelengths from 6 to 10 µm. In addition, when the microscope is operated in scanning mode at fixed wavelength, the guided mode exiting the output facet is imaged with a lateral resolution better than 500 nm i.e. below the diffraction limit. The characterization technique can be applied to any mid-infrared waveguide platform and can provide non-destructive in-situ testing of discrete waveguide components.

6.
Opt Express ; 28(5): 7245-7258, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225957

RESUMO

We study radiative relaxation at terahertz frequencies in n-type Ge/SiGe quantum wells, optically pumped with a terahertz free electron laser. Two wells coupled through a tunneling barrier are designed to operate as a three-level laser system with non-equilibrium population generated by optical pumping around the 1→3 intersubband transition at 10 THz. The non-equilibrium subband population dynamics are studied by absorption-saturation measurements and compared to a numerical model. In the emission spectroscopy experiment, we observed a photoluminescence peak at 4 THz, which can be attributed to the 3→2 intersubband transition with possible contribution from the 2→1 intersubband transition. These results represent a step towards silicon-based integrated terahertz emitters.

7.
Opt Express ; 28(4): 5749-5757, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121790

RESUMO

Low loss, single mode, Ge-on-Si rib waveguides are used to demonstrated optical sensing in the molecular fingerprint region of the mid-infrared spectrum. Sensing is carried out using two spin-coated films, with strong absorption in the mid-infrared. These films are used to calibrate the modal overlap with an analyte, and therefore experimentally demonstrate the potential for Ge-on-Si waveguides for mid-infrared sensing applications. The results are compared to Fourier transform infrared spectroscopy measurements. The advantage of waveguide spectroscopy is demonstrated in terms of the increased optical interaction, and a new multi-path length approach is demonstrated to improve the dynamic range, which is not possible with conventional FTIR or attenuated total reflection (ATR) measurements. These results highlight the potential for Ge-on-Si as an integrated sensing platform for healthcare, pollution monitoring and defence applications.

8.
Opt Express ; 28(2): 1330-1344, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121846

RESUMO

We present a scanning light detection and ranging (LIDAR) system incorporating an individual Ge-on-Si single-photon avalanche diode (SPAD) detector for depth and intensity imaging in the short-wavelength infrared region. The time-correlated single-photon counting technique was used to determine the return photon time-of-flight for target depth information. In laboratory demonstrations, depth and intensity reconstructions were made of targets at short range, using advanced image processing algorithms tailored for the analysis of single-photon time-of-flight data. These laboratory measurements were used to predict the performance of the single-photon LIDAR system at longer ranges, providing estimations that sub-milliwatt average power levels would be required for kilometer range depth measurements.

9.
Opt Express ; 28(3): 4010-4020, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122061

RESUMO

A silicon nitride micro-ring resonator with a loaded Q factor of 1.4 × 106 at 780 nm wavelength is demonstrated on silicon substrates. This is due to the low propagation loss waveguides achieved by optimization of waveguide sidewall interactions and top cladding refractive index. Potential applications include laser frequency stabilization allowing for chip-scale atomic systems targeting the 87Rb atomic transition at 780.24 nm. The temperature dependent wavelength shift of the micro-ring was determined to be 13.1 pm/K indicating that a minimum temperature stability of less than ±15 mK is required for such devices for wavelength locking applications. If a polyurethane acrylate top cladding of an optimized thickness is used then the micro-ring could effectively be athermal, resulting in reduced footprint, power consumption, and cost of potential devices.

10.
Cryst Growth Des ; 20(5): 2914-2920, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33828439

RESUMO

We present an experimental and theoretical analysis of the formation of nanovoids within Si microcrystals epitaxially grown on Si patterned substrates. The growth conditions leading to the nucleation of nanovoids have been highlighted, and the roles played by the deposition rate, substrate temperature, and substrate pattern geometry are identified. By combining various scanning and transmission electron microscopy techniques, it has been possible to link the appearance pits of a few hundred nanometer width at the microcrystal surface with the formation of nanovoids within the crystal volume. A phase-field model, including surface diffusion and the flux of incoming material with shadowing effects, reproduces the qualitative features of the nanovoid formation thereby opening new perspectives for the bottom-up fabrication of 3D semiconductors microstructures.

11.
Nat Commun ; 10(1): 1086, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842439

RESUMO

Single-photon detection has emerged as a method of choice for ultra-sensitive measurements of picosecond optical transients. In the short-wave infrared, semiconductor-based single-photon detectors typically exhibit relatively poor performance compared with all-silicon devices operating at shorter wavelengths. Here we show a new generation of planar germanium-on-silicon (Ge-on-Si) single-photon avalanche diode (SPAD) detectors for short-wave infrared operation. This planar geometry has enabled a significant step-change in performance, demonstrating single-photon detection efficiency of 38% at 125 K at a wavelength of 1310 nm, and a fifty-fold improvement in noise equivalent power compared with optimised mesa geometry SPADs. In comparison with InGaAs/InP devices, Ge-on-Si SPADs exhibit considerably reduced afterpulsing effects. These results, utilising the inexpensive Ge-on-Si platform, provide a route towards large arrays of efficient, high data rate Ge-on-Si SPADs for use in eye-safe automotive LIDAR and future quantum technology applications.

12.
Light Sci Appl ; 7: 106, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564312

RESUMO

We demonstrate third harmonic generation in plasmonic antennas consisting of highly doped germanium grown on silicon substrates and designed to be resonant in the mid-infrared frequency range that is inaccessible with conventional nonlinear plasmonic materials. Owing to the near-field enhancement, the result is an ultrafast, subdiffraction, coherent light source with a wavelength tunable between 3 and 5 µm, and ideally overlapping with the fingerprint region of molecular vibrations. To observe the nonlinearity in this challenging spectral window, a high-power femtosecond laser system equipped with parametric frequency conversion in combination with an all-reflective confocal microscope setup is employed. We demonstrate spatially resolved maps of the linear scattering cross section and the nonlinear emission of single isolated antenna structures. A clear third-order power dependence as well as mid-infrared emission spectra prove the nonlinear nature of the light emission. Simulations support the observed resonance length of the double-rod antenna and demonstrate that the field enhancement inside the antenna material is responsible for the nonlinear frequency mixing.

13.
Chem Sci ; 9(15): 3828-3836, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29780515

RESUMO

Anion exchange has been performed with nanoplates of tin sulfide (SnS) via "soft chemical" organic-free solution syntheses to yield layered pseudo-ternary tin chalcogenides on a 10 g-scale. SnS undergoes a topotactic transformation to form a series of S-substituted tin selenide (SnSe) nano/micro-plates with tuneable chalcogenide composition. SnS0.1Se0.9 nanoplates were spark plasma sintered into phase-pure, textured, dense pellets, the ZT of which has been significantly enhanced to ≈1.16 from ≈0.74 at 923 K via microstructure texturing control. These approaches provide versatile, scalable and low-cost routes to p-type layered tin chalcogenides with controllable composition and competitive thermoelectric performance.

14.
Philos Trans A Math Phys Eng Sci ; 376(2120)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29661979

RESUMO

A microelectromechanical system (MEMS) gravimeter has been manufactured with a sensitivity of 40 ppb in an integration time of 1 s. This sensor has been used to measure the Earth tides: the elastic deformation of the globe due to tidal forces. No such measurement has been demonstrated before now with a MEMS gravimeter. Since this measurement, the gravimeter has been miniaturized and tested in the field. Measurements of the free-air and Bouguer effects have been demonstrated by monitoring the change in gravitational acceleration measured while going up and down a lift shaft of 20.7 m, and up and down a local hill of 275 m. These tests demonstrate that the device has the potential to be a useful field-portable instrument. The development of an even smaller device is underway, with a total package size similar to that of a smartphone.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'.

15.
Sensors (Basel) ; 17(11)2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29117099

RESUMO

Gravimeters are used to measure density anomalies under the ground. They are applied in many different fields from volcanology to oil and gas exploration, but present commercial systems are costly and massive. A new type of gravity sensor has been developed that utilises the same fabrication methods as those used to make mobile phone accelerometers. In this study, we describe the first results of a field-portable microelectromechanical system (MEMS) gravimeter. The stability of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard deviation of 5.58 × 10 - 6 ms - 2 . It is then demonstrated that a change in gravitational acceleration of 4.5 × 10 - 6 ms - 2 can be measured as the device is moved between the top and the bottom of a 20.7 m lift shaft with a signal-to-noise ratio (SNR) of 14.25. Finally, the device is demonstrated to be stable in a more harsh environment: a 4.5 × 10 - 4 ms - 2 gravity variation is measured between the top and bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards a chip-sized gravity sensor.

16.
Sci Rep ; 7(1): 3004, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592820

RESUMO

Junction-less nanowire transistors are being investigated to solve short channel effects in future CMOS technology. Here we demonstrate 8 nm diameter silicon nanowire junction-less transistors with metallic doping densities which demonstrate clear 1D electronic transport characteristics. The 1D regime allows excellent gate modulation with near ideal subthreshold slopes, on- to off-current ratios above 108 and high on-currents at room temperature. Universal conductance scaling as a function of voltage and temperature similar to previous reports of Luttinger liquids and Coulomb gap behaviour at low temperatures suggests that many body effects including electron-electron interactions are important in describing the electronic transport. This suggests that modelling of such nanowire devices will require 1D models which include many body interactions to accurately simulate the electronic transport to optimise the technology but also suggest that 1D effects could be used to enhance future transistor performance.

17.
Phys Rev Lett ; 117(4): 047401, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27494498

RESUMO

Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

18.
Angew Chem Int Ed Engl ; 55(22): 6433-7, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27094703

RESUMO

A surfactant-free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single-phase orthorhombic SnSe nanoplates in gram quantities. Individual nanoplates are composed of {100} surfaces with {011} edge facets. Hot-pressed nanostructured compacts (Eg ≈0.85 eV) exhibit excellent electrical conductivity and thermoelectric power factors (S(2) σ) at 550 K. S(2) σ values are 8-fold higher than equivalent materials prepared using citric acid as a structure-directing agent, and electrical properties are comparable to the best-performing, extrinsically doped p-type polycrystalline tin selenides. The method offers an energy-efficient, rapid route to p-type SnSe nanostructures.

19.
Nano Lett ; 15(11): 7225-31, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26457387

RESUMO

Midinfrared plasmonic sensing allows the direct targeting of unique vibrational fingerprints of molecules. While gold has been used almost exclusively so far, recent research has focused on semiconductors with the potential to revolutionize plasmonic devices. We fabricate antennas out of heavily doped Ge films epitaxially grown on Si wafers and demonstrate up to 2 orders of magnitude signal enhancement for the molecules located in the antenna hot spots compared to those located on a bare silicon substrate. Our results set a new path toward integration of plasmonic sensors with the ubiquitous CMOS platform.

20.
Nature ; 515(7528): 545-9, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25409147

RESUMO

Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2](4-) as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(v)2O6](2-) moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call 'write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...