Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 13: 402, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22900582

RESUMO

BACKGROUND: Cowpea, Vigna unguiculata L. Walp., is one of the most important food and forage legumes in the semi-arid tropics. While most domesticated forms of cowpea are susceptible to the root parasitic weed Striga gesnerioides, several cultivars have been identified that show race-specific resistance. Cowpea cultivar B301 contains the RSG3-301 gene for resistance to S. gesnerioides race SG3, but is susceptible to race SG4z. When challenged by SG3, roots of cultivar B301 develop a strong resistance response characterized by a hypersensitive reaction and cell death at the site of parasite attachment. In contrast, no visible response occurs in B301 roots parasitized by SG4z. RESULTS: Gene expression in the roots of the cowpea cultivar B301 during compatible (susceptible) and incompatible (resistant) interactions with S. gesnerioides races SG4z and SG3, respectively, were investigated at the early (6 days post-inoculation (dpi)) and late (13 dpi) stages of the resistance response using a Nimblegen custom design cowpea microarray. A total of 111 genes were differentially expressed in B301 roots at 6 dpi; this number increased to 2102 genes at 13 dpi. At 13 dpi, a total of 1944 genes were differentially expressed during compatible (susceptible) interactions of B301 with SG4z. Genes and pathways involved in signal transduction, programmed cell death and apoptosis, and defense response to biotic and abiotic stress were differentially expressed in the early resistance response; at the later time point, enrichment was primarily for defense-related gene expression, and genes encoding components of lignifications and secondary wall formation. In compatible interactions (B301-SG4z), multiple defense pathways were repressed, including those involved in lignin biosynthesis and secondary cell wall modifications, while cellular transport processes for nitrogen and sulfur were increased. CONCLUSION: Distinct changes in global gene expression profiles occur in host roots following successful and unsuccessful attempted parasitism by Striga. Induction of specific defense related genes and pathways defines components of a unique resistance mechanism. Some genes and pathways up-regulated in the host resistance response to SG3 are repressed in the susceptible interactions, suggesting that the parasite is targeting specific components of the host's defense. These results add to our understanding of plant-parasite interactions and the evolution of resistance to parasitic weeds.


Assuntos
Genes de Plantas , Striga/genética , Fabaceae/genética , Fabaceae/parasitologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/parasitologia , Striga/fisiologia , Simbiose
2.
Infect Immun ; 80(5): 1934-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22331430

RESUMO

The adipocytokine leptin links nutritional status to immune function. Leptin signaling protects from amebiasis, but the molecular mechanism is not understood. We developed an in vitro model of ameba-host cell interaction to test the hypothesis that leptin prevents ameba-induced apoptosis in host epithelial cells. We demonstrated that activation of mammalian leptin signaling increased cellular resistance to amebic cytotoxicity, including caspase-3 activation. Exogenous expression of the leptin receptor conferred resistance in susceptible cells, and leptin stimulation enhanced protection. A series of leptin receptor signaling mutants showed that resistance to amebic cytotoxicity was dependent on activation of STAT3 but not the Src homology-2 domain-containing tyrosine phosphatase (SHP-2) or STAT5. A common polymorphism in the leptin receptor (Q223R) that increases susceptibility to amebiasis in humans and mice was found to increase susceptibility to amebic cytotoxicity in single cells. The Q223R polymorphism also decreased leptin-dependent STAT3 activation by 21% relative to that of the wild-type (WT) receptor (P = 0.035), consistent with a central role of STAT3 signaling in protection. A subset of genes uniquely regulated by STAT3 in response to leptin was identified. Most notable were the TRIB1 and suppressor of cytokine signaling 3 (SOCS3) genes, which have opposing roles in the regulation of apoptosis. Overall apoptotic genes were highly enriched in this gene set (P < 1E-05), supporting the hypothesis that leptin regulation of host apoptotic genes via STAT3 is responsible for protection. This is the first demonstration of a mammalian signaling pathway that restricts amebic pathogenesis and represents an important advance in our mechanistic understanding of how leptin links nutrition and susceptibility to infection.


Assuntos
Entamoeba histolytica/fisiologia , Leptina/farmacologia , Fator de Transcrição STAT3/metabolismo , Apoptose/fisiologia , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Transdução de Sinais/fisiologia
3.
J Mass Spectrom ; 43(5): 674-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18205240

RESUMO

For GC-MS analysis of delta-9-tetrahydrocannabinol (delta-9-THC), perfluoroacid anhydrides in combination with perfluoroalcohols are commonly used for derivatization. This reagent mixture is preferred because it allows simultaneous derivatization of delta-9-THC and its acid metabolite, 11-nor-delta-9-THC-9-carboxylic acid present in biological samples. When delta-9-THC was derivatized by trifluoroacetic anhydride/hexafluoroisopropanol (TFAA/HFIPOH) and analyzed by GC-MS using full scan mode (50-550 amu), two peaks (P1 and P2) with an identical molecular mass of 410 amu were observed. On the basis of the total ion chromatogram (TIC), P1 with a shorter retention time (RT) was the major peak (TIC 84%). To identify the peaks, delta-8-THC was also tested under the same conditions. The RT and spectra of the major peak (TIC 95%) were identical with that of P1 for delta-9-THC. A minor peak (5%) present also correlated well with the latter peak (P2) for the delta-9-THC derivative. The fragmentation pathway of P1 was primarily demethylation followed by retro Diels-Alder fragmentation (M - 15-68, base peak 100%) indicating P1 as a delta-8-THC-trifluoroacetyl compound. This indicated that delta-9-THC isomerized to delta-8-THC during derivatization with TFAA/HFIPOH. Similar results were also observed when delta-9-THC was derivatized with pentafluoropropionic anhydride/pentafluoropropanol or heptafluorobutyric anhydride/heptafluorobutanol. No isomerization was observed when chloroform was used in derivatization with TFAA. In this reaction, the peaks of delta-8-THC-TFA and delta-9-THC-TFA had retention times and mass spectra matching with P1 and P2, respectively. Because of isomerization, perfluoroacid anhydrides/perfluoroalcohols are not suitable derivatizing agents for analysis of delta-9-THC; whereas the TFAA in chloroform is suitable for the analysis.


Assuntos
Dronabinol/química , Compostos de Flúor/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Isomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...