Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268211

RESUMO

Monoclonal antibodies (mAbs) are the treatment of choice for high-risk ambulatory persons with mild to moderate COVID-19. We studied viral culture dynamics post-treatment in a subset of participants receiving the mAb bamlanivimab in the ACTIV-2 trial. Viral load by qPCR and viral culture were performed from anterior nasal swabs collected on study days 0 (day of treatment), 1, 2, 3, and 7. Treatment with mAb resulted in rapid clearance of culturable virus in participants without treatment-emergent resistance. One day after treatment, 0 of 28 (0%) participants receiving mAb and 16 of 39 (41%) receiving placebo still had culturable virus (p <0.0001); nasal viral loads were only modestly lower in the mAb-treated group at days 2 and 3. Recrudescence of culturable virus was detected in three participants with emerging mAb resistance and viral load rebound. The rapid reduction in shedding of viable SARS-CoV-2 after mAb treatment highlights the potential role of mAbs in preventing disease transmission.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268009

RESUMO

ImportanceThe antiviral activity and efficacy of anti-SARS-CoV-2 monoclonal antibody (mAb) therapies to accelerate recovery from COVID-19 is important to define. ObjectiveTo determine safety and efficacy of the mAb bamlanivimab to reduce nasopharyngeal (NP) SARS-CoV-2 RNA levels and symptom duration. DesignACTIV-2/A5401 is a randomized, blinded, placebo-controlled platform trial. Two dose cohorts were enrolled between August 19 and November 17, 2020 for phase 2 evaluation: in the first, participants were randomized 1:1 to bamlanivimab 7000 mg versus placebo, and in the second to bamlanivimab 700 mg versus placebo. Randomization was stratified by time from symptom onset ([≤] or >5 days) and risk of progression to severe COVID-19 ("higher" vs "lower"). SettingMulticenter trial conducted at U.S. sites. ParticipantsNon-hospitalized adults [≥]18 years of age with positive SARS-CoV-2 antigen or nucleic acid test within 7 days, [≤]10 days of COVID-19 symptoms, and with oxygen saturation [≥]92% within 48 hours prior to study entry. InterventionSingle infusion of bamlanivimab (7000 or 700 mg) or placebo. Main Outcomes and MeasuresDetection of NP SARS-CoV-2 RNA at days 3, 7, 14, 21, and 28, time to improvement of all of 13 targeted COVID-19 symptoms by daily self-assessment through day 28, and grade 3 or higher treatment emergent adverse events (TEAEs) through day 28. Secondary measures included quantitative NP SARS-CoV-2 RNA, all-cause hospitalizations and deaths (composite), area under the curve of symptom scores from day 0 through day 28, plasma bamlanivimab concentrations, plasma and serum inflammatory biomarkers, and safety through week 24. ResultsNinety-four participants were enrolled to the 7000 mg cohort and 223 to the 700 mg cohort and initiated study intervention. The proportion meeting protocol criteria for "higher" risk for COVID-19 progression was 42% and 51% for the 7000 and 700 mg cohort, respectively. Median time from symptom onset at study entry for both cohorts was 6 days. There was no difference in the proportion with undetectable NP SARS-CoV-2 RNA at any post-treatment timepoints (risk ratio compared to placebo, 0.82-1.05 for 7000 mg dose [overall p=0.88] and 0.81-1.21 for 700 mg dose [overall p=0.49]), time to symptom improvement (median of 21 vs 18.5 days, p=0.97, for 7000 mg bamlanivimab vs placebo and 24 vs 20.5 days, p=0.08, for 700 mg bamlanivimab vs placebo), or grade 3+ TEAEs with either dose compared to placebo. Median NP SARS-CoV-2 RNA levels were lower at day 3 and C-reactive protein, ferritin, and fibrinogen levels significantly reduced at days 7 and 14 for bamlanivimab 700 mg compared to placebo, with similar trends observed for bamlanivimab 7000 mg. Viral decay modeling supported more rapid decay with bamlanivimab compared to placebo. Conclusions and RelevanceTreatment with bamlanivimab 7000 mg and 700 mg was safe and compared to placebo led to more rapid reductions in NP SARS-CoV-2 RNA and inflammatory biomarkers, but did not decrease time to symptom improvement. The clinical utility of mAbs for outcomes other than hospitalizations and deaths is uncertain. Trial RegistrationClinicalTrials.gov Identifier: NCT04518410 KEY POINTSO_ST_ABSQuestionC_ST_ABSWhat is the safety and efficacy of bamlanivimab monoclonal antibody (mAb) treatment for mild to moderate COVID-19? FindingsIn this randomized, placebo-controlled phase 2 trial of 317 non-hospitalized adults with COVID-19, there was no relationship between symptoms or disease progression risk and nasopharyngeal (NP) virus shedding. Bamlanivimab was safe and reduced NP SARS-CoV-2 RNA levels and inflammatory biomarker levels more than placebo, but did not shorten symptom duration. MeaningNasal virus shedding was not associated with symptoms or baseline risk factors for severe COVID-19. Bamlanivimab, which has been associated with reduced hospitalizations in high-risk individuals, demonstrated antiviral activity with early post-treatment NP sampling but did not accelerate symptom improvement. The clinical utility of bamlanivimab for outcomes other than hospitalizations and deaths, including longer-term outcomes, is uncertain.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263105

RESUMO

Resistance mutations to monoclonal antibody (mAb) therapy has been reported, but in the non-immunosuppressed population, it is unclear if in vivo emergence of SARS-CoV-2 resistance mutations alters either viral replication dynamics or therapeutic efficacy. In ACTIV-2/A5401, non-hospitalized participants with symptomatic SARS-CoV-2 infection were randomized to bamlanivimab (700mg or 7000mg) or placebo. Treatment-emergent resistance mutations were significantly more likely detected after bamlanivimab 700mg treatment than placebo (7% of 111 vs 0% of 112 participants, P=0.003). There were no treatment-emergent resistance mutations among the 48 participants who received bamlanivimab 7000mg. Participants with emerging mAb resistant virus had significantly higher pre-treatment nasopharyngeal and anterior nasal viral load. Intensive respiratory tract viral sampling revealed the dynamic nature of SARS-CoV-2 evolution, with evidence of rapid and sustained viral rebound after emergence of resistance mutations, and worsened symptom severity. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest and associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment, resulting in prolonged high level respiratory tract viral loads and clinical worsening. Careful virologic assessment should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...