Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anesth Analg ; 129(6): 1564-1573, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31743177

RESUMO

BACKGROUND: Pneumoperitoneum and nonphysiological positioning required for robotic surgery increase cardiopulmonary risk because of the use of larger airway pressures (Paws) to maintain tidal volume (VT). However, the quantitative partitioning of respiratory mechanics and transpulmonary pressure (PL) during robotic surgery is not well described. We tested the following hypothesis: (1) the components of driving pressure (transpulmonary and chest wall components) increase in a parallel fashion at robotic surgical stages (Trendelenburg and robot docking); and (2) deep, when compared to routine (moderate), neuromuscular blockade modifies those changes in PLs as well as in regional respiratory mechanics. METHODS: We studied 35 American Society of Anesthesiologists (ASA) I-II patients undergoing elective robotic surgery. Airway and esophageal balloon pressures and respiratory flows were measured to calculate respiratory mechanics. Regional lung aeration and ventilation was assessed with electrical impedance tomography and level of neuromuscular blockade with acceleromyography. During robotic surgical stages, 2 crossover randomized groups (conditions) of neuromuscular relaxation were studied: Moderate (1 twitch in the train-of-four stimulation) and Deep (1-2 twitches in the posttetanic count). RESULTS: Pneumoperitoneum was associated with increases in driving pressure, tidal changes in PL, and esophageal pressure (Pes). Steep Trendelenburg position during robot docking was associated with further worsening of the respiratory mechanics. The fraction of driving pressures that partitioned to the lungs decreased from baseline (63% ± 15%) to Trendelenburg position (49% ± 14%, P < .001), due to a larger increase in chest wall elastance (Ecw; 12.7 ± 7.6 cm H2O·L) than in lung elastance (EL; 4.3 ± 5.0 cm H2O·L, P < .001). Consequently, from baseline to Trendelenburg, the component of Paw affecting the chest wall increased by 6.6 ± 3.1 cm H2O, while PLs increased by only 3.4 ± 3.1 cm H2O (P < .001). PL and driving pressures were larger at surgery end than at baseline and were accompanied by dorsal aeration loss. Deep neuromuscular blockade did not change respiratory mechanics, regional aeration and ventilation, and hemodynamics. CONCLUSIONS: In robotic surgery with pneumoperitoneum, changes in ventilatory driving pressures during Trendelenburg and robot docking are distributed less to the lungs than to the chest wall as compared to routine mechanical ventilation for supine patients. This effect of robotic surgery derives from substantially larger increases in Ecw than ELs and reduces the risk of excessive PLs. Deep neuromuscular blockade does not meaningfully change global or regional lung mechanics.


Assuntos
Laparoscopia , Monitorização Intraoperatória/métodos , Monitoração Neuromuscular , Pneumoperitônio Artificial , Respiração Artificial , Mecânica Respiratória , Procedimentos Cirúrgicos Robóticos , Idoso , Boston , Estudos Cross-Over , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça , Humanos , Laparoscopia/efeitos adversos , Masculino , Pessoa de Meia-Idade , Posicionamento do Paciente , Pneumoperitônio Artificial/efeitos adversos , Pressão , Estudos Prospectivos , Respiração Artificial/efeitos adversos , Fatores de Risco , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
2.
Anesth Analg ; 127(3): 784-791, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29933268

RESUMO

BACKGROUND: Recruitment maneuver and positive end-expiratory pressure (PEEP) can be used to counteract intraoperative anesthesia-induced atelectasis. Variable ventilation can stabilize lung mechanics by avoiding the monotonic tidal volume and protect lung parenchyma as tidal recruitment is encompassed within the tidal volume variability. METHODS: Forty-nine (7 per group) male Wistar rats were anesthetized, paralyzed, and mechanically ventilated. A recruitment maneuver followed by stepwise decremental PEEP titration was performed while continuously estimating respiratory system mechanics using recursive least squares. After a new recruitment, animals were ventilated for 2 hours in volume-control with monotonic (VCV) or variable (VV) tidal volumes. PEEP was adjusted at a level corresponding to the minimum elastance or 2 cm H2O above or below this level. Lungs were harvested for histologic analysis (left lung) and cytokines measurement (right lung). Seven animals were euthanized before the first recruitment as controls. RESULTS: A time-dependent increase in respiratory system elastance was observed and significantly minimized by PEEP (P < .001). Variable ventilation attenuated the amount of concentrations of proinflammatory mediators in lung homogenate: neutrophil cytokine-induced neutrophil chemoattractant 1 (VV = 40 ± 5 and VCV = 57 ± 8 pg/mg; P < .0001) and interleukin-1ß (VV = 59 ± 25 and VCV = 261 ± 113 pg/mg; P < .0001). Variable ventilation was also associated with lower structural lung parenchyma damage. Significant reductions in air fraction at dorsal and caudal lung regions were observed in all ventilated animals (P < .001). CONCLUSIONS: Variable ventilation was more protective than conventional ventilation within the applied PEEP levels.


Assuntos
Anestésicos Dissociativos/administração & dosagem , Pneumonia/metabolismo , Pneumonia/patologia , Respiração com Pressão Positiva/métodos , Mecânica Respiratória/fisiologia , Animais , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pneumonia/etiologia , Respiração com Pressão Positiva/efeitos adversos , Respiração com Pressão Positiva/tendências , Ratos , Ratos Wistar , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Respiração Artificial/tendências , Volume de Ventilação Pulmonar/fisiologia
3.
Mem Inst Oswaldo Cruz ; 112(8): 551-560, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28767980

RESUMO

BACKGROUND: Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES: The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS: To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS: At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS: iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.


Assuntos
Células da Medula Óssea/fisiologia , Movimento Celular , Doença de Chagas/parasitologia , Miocárdio/citologia , Doença Aguda , Animais , Transplante de Medula Óssea/métodos , Cardiomiopatia Chagásica/parasitologia , Quimera , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma cruzi/fisiologia
4.
Mem. Inst. Oswaldo Cruz ; 112(8): 551-560, Aug. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-894864

RESUMO

BACKGROUND Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.


Assuntos
Animais , Feminino , Camundongos , Trypanosoma cruzi/fisiologia , Células da Medula Óssea/fisiologia , Cardiomiopatia Chagásica/parasitologia , Transplante de Medula Óssea/métodos , Doença de Chagas/parasitologia , Movimento Celular , Doenças dos Animais
5.
J Appl Physiol (1985) ; 121(6): 1335-1347, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27445302

RESUMO

Parenchymal strain is a key determinant of lung injury produced by mechanical ventilation. However, imaging estimates of volumetric tidal strain (ε = regional tidal volume/reference volume) present substantial conceptual differences in reference volume computation and consideration of tidally recruited lung. We compared current and new methods to estimate tidal volumetric strains with computed tomography, and quantified the effect of tidal volume (VT) and positive end-expiratory pressure (PEEP) on strain estimates. Eight supine pigs were ventilated with VT = 6 and 12 ml/kg and PEEP = 0, 6, and 12 cmH2O. End-expiratory and end-inspiratory scans were analyzed in eight regions of interest along the ventral-dorsal axis. Regional reference volumes were computed at end-expiration (with/without correction of regional VT for intratidal recruitment) and at resting lung volume (PEEP = 0) corrected for intratidal and PEEP-derived recruitment. All strain estimates demonstrated vertical heterogeneity with the largest tidal strains in middependent regions (P < 0.01). Maximal strains for distinct estimates occurred at different lung regions and were differently affected by VT-PEEP conditions. Values consistent with lung injury and inflammation were reached regionally, even when global measurements were below critical levels. Strains increased with VT and were larger in middependent than in nondependent lung regions. PEEP reduced tidal-strain estimates referenced to end-expiratory lung volumes, although it did not affect strains referenced to resting lung volume. These estimates of tidal strains in normal lungs point to middependent lung regions as those at risk for ventilator-induced lung injury. The different conditions and topography at which maximal strain estimates occur allow for testing the importance of each estimate for lung injury.


Assuntos
Pulmão/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Animais , Inflamação/fisiopatologia , Respiração com Pressão Positiva/métodos , Respiração Artificial/métodos , Suínos , Tomografia Computadorizada por Raios X/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia
6.
Respir Care ; 59(12): 1888-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25118312

RESUMO

BACKGROUND: Evidence exists that during pressure support ventilation (PSV), the addition of an extrinsic (ie, ventilator-generated) breath-to-breath variability (BBV) of breathing pattern improves respiratory function. If BBV is beneficial per se, choosing the PS level that maximizes it could be considered a valid strategy for conventional PSV. In this study, we evaluated the effect of different PS levels on intrinsic BBV in acutely ill, mechanically ventilated subjects to determine whether a significant relationship exists between PS level and BBV magnitude. METHODS: Fourteen invasively mechanically ventilated subjects were prospectively studied. PS was adjusted at 20 cm H2O and sequentially reduced to 15, 10, and 5 cm H2O. Arterial blood gas analysis and pressure at 0.1 s after the onset of inspiration (P0.1) were measured at each PS level. Airway and esophageal pressure and air flow were continuously recorded. Peak inspiratory flow, tidal volume (VT), breathing frequency, and pressure-time product (PTP) were calculated on a breath-by-breath basis. The breathing pattern variability was assessed by the coefficient of variation of the time series of VT, peak inspiratory flow, and breathing frequency from ∼ 60 consecutive breath cycles at each PS level. A general linear model for repeated measures was applied, with PS as an independent factor. A significance level of .05 was considered. RESULTS: Despite a large inter-individual difference in all measured variables (P < .001), the coefficient of variation was as low as 30%, and no significant differences in the coefficient of variation of peak inspiratory flow, breathing frequency, and VT between PS levels were observed (P > .15). Additionally, a significant increase in P0.1, PTP, and breathing frequency (P < .01) and a reduction in VT (P < .001) were observed with PS reduction. CONCLUSIONS: Despite a significant increase in spontaneous activity with PS reduction, BBV was not influenced by the PS level and was as low as 30% for all evaluated parameters.


Assuntos
Pressão , Respiração Artificial/métodos , Respiração , Insuficiência Respiratória/terapia , Adulto , Idoso , Gasometria , Esôfago , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Ventilação Pulmonar , Insuficiência Respiratória/fisiopatologia , Taxa Respiratória , Volume de Ventilação Pulmonar , Fatores de Tempo
7.
Anesth Analg ; 116(3): 677-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22543064

RESUMO

BACKGROUND: The volume-dependent single compartment model (VDSCM) has been applied for identification of overdistension in mechanically ventilated patients with acute lung injury. In this observational study we evaluated the use of the VDSCM to identify tidal recruitment/overdistension induced by tidal volume (Vt) and positive end-expiratory pressure (PEEP) in lung-healthy anesthetized subjects. METHODS: Fifteen patients (ASA physical status I-II) undergoing general anesthesia for elective plastic breast reconstruction surgery were mechanically ventilated in volume-controlled ventilation (VCV), with Vt of 8 mL•kg(-1) and PEEP of 0 cm H(2)O. With these settings, ventilatory mode was randomly adjusted in VCV or pressure-controlled ventilation (PCV) and PEEP was sequentially increased from 0 to 5 and 10 cm H(2)O, 5 min per step. Thereafter, PEEP was decreased to 0 cm H(2)O, Vt increased to 10 mL•kg(-1) and, keeping minute ventilation constant, PEEP was similarly increased to 5 and 10 cm H(2)O. Airway pressure and flow were continuously recorded and fitted to the VDSCM with or without considering flow-dependencies. A "distension index" (%E(2)) derived from the VDSCM was used to assess Vt and PEEP-induced recruitment/overdistension. Positive and negative values of %E(2) suggest tidal overdistension or tidal recruitment, respectively. In addition, the linear respiratory system elastance was calculated. Comparisons among variables at each PEEP value, Vt setting, ventilatory mode, and regression model considering or not considering flow-dependencies were performed with the Wilcoxon-sign rank test for paired samples (P < 0.05). Multiple comparisons were corrected with the Bonferroni method. The relative change in the estimated noisy variance was used as an index of the goodness of fit of the models. RESULTS: VDSCM including the flow-dependent parameter significantly improved estimated noisy variance in almost all experimental conditions (11.2 to 71.4, smallest of the lower and highest of the upper 95% confidence intervals). No differences in %E(2) were observed between VCV and PCV, at comparable Vt and PEEP levels, when flow-dependencies were included in the regression model. The negligence of the flow-dependent parameter systematically led to an underestimation of %E(2) in PCV compared to VCV mode (all P < 0.02). At a given Vt, %E(2) was negative at a PEEP of 0 cm H(2)O and significantly increased with PEEP, being almost 0 at a PEEP of 5 cm H(2)O. At a given level of PEEP, %E(2) significantly increased with Vt. CONCLUSIONS: The distension index %E(2), derived from the VDSCM considering flow-dependencies, seems able to identify tidal recruitment/overdistension induced by Vt and PEEP independent of flow waveform in healthy lung-anesthetized patients.


Assuntos
Anestesia Geral/métodos , Pulmão/fisiologia , Respiração com Pressão Positiva/métodos , Respiração Artificial/métodos , Volume de Ventilação Pulmonar/fisiologia , Anestesia Geral/efeitos adversos , Feminino , Humanos , Respiração Artificial/efeitos adversos , Volume de Ventilação Pulmonar/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...