Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35590905

RESUMO

In the context of all-digital radar systems, phase-modulated continuous wave (PMCW) based on pseudorandom binary sequences (PRBSs) appears to be a prominent candidate modulation scheme for applications such as autonomous driving. Among the reasons for its candidacy are its simplified transmitter architecture and lower linearity requirements (e.g., compared to orthogonal-frequency division multiplexing radars), as well as its high velocity unambiguity and multiple-input multiple-output operation capability, all of which are characteristic of digital radars. For appropriate operation of a PMCW radar, choosing a PRBS whose periodic autocorrelation function (PACF) has low sidelobes and high robustness to Doppler shifts is paramount. In this sense, this article performs an analysis of Doppler shift tolerance of the PACFs of typically adopted PRBSs in PMCW radar systems supported by simulation and measurement results. To accurately measure the Doppler-shift-induced degradation of PACFs, peak power loss ratio (PPLR), peak sidelobe level ratio (PSLR), and integrated-sidelobe level ratio (ISLR) were used as metrics. Furthermore, to account for effects on targets whose ranges are not multiples of the range resolution, oversampled PACFs are analyzed.

2.
Sensors (Basel) ; 19(18)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547328

RESUMO

High-accuracy, short-range distance measurement is required in a variety of industrial applications e.g., positioning of robots in a fully automated production process, level measurement of liquids in small containers. An FMCW radar sensor is suitable for this purpose, since many of these applications involve harsh environments. Due to the progress in the field of semiconductor technology, FMCW radar sensors operating in different millimeter-wave frequency bands are available today. An important question in this context, which has not been investigated so far is how does a millimeter-wave frequency band influence the sensor accuracy, when thousands of distance measurements are performed with a sensor. This topic has been dealt with for the first time in this paper. The method used for analyzing the FMCW radar signal combines a frequency- and phase-estimation algorithm. The frequency-estimation algorithm based on the fast Fourier transform and the chirp-z transform provides a coarse estimate of the target distance. Subsequently, the phase-estimation algorithm based on a cross-correlation function provides a fine estimate of the target distance. The novel aspects of this paper are as follows. First, the estimation theory concept of Cramér-Rao lower bound (CRLB) has been used to compare the accuracy of two millimeter-wave FMCW radars operating at 60 GHz and 122 GHz. In this comparison, the measurement parameters (e.g., bandwidth, signal-to-noise ratio) as well as the signal-processing algorithm used for both the radars are the same, thus ensuring an unbiased comparison of the FMCW radars, solely based on the choice of millimeter-wave frequency band. Second, the improvement in distance measurement accuracy obtained after each step of the combined frequency- and phase-estimation algorithm has been experimentally demonstrated for both the radars. A total of 5100 short-range distance measurements are made using the 60 GHz and 122 GHz FMCW radar. The measurement results are analyzed at various stages of the frequency- and phase-estimation algorithm and the measurement error is calculated using a nanometer-precision linear motor. At every stage, the mean error values measured with the 60 GHz and 122 GHz FMCW radars are compared. The final accuracy achieved using both radars is of the order of a few micrometers. The measured standard deviation values of the 60 GHz and 122 GHz FMCW radar have been compared against the CRLB. As predicted by the CRLB, this paper experimentally validates for the first time that the 122 GHz FMCW radar provides a higher repeatability of micrometer-accuracy distance measurements than the 60 GHz FMCW radar.

3.
Environ Health ; 17(1): 36, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650009

RESUMO

BACKGROUND: Regarding electromagnetic fields from mobile communication technologies, empirical studies have shown that precautionary information given to lay recipients increases their risk perceptions, i.e. the belief that electromagnetic fields are dangerous. Taking this finding one step further, the current study investigates whether precautionary information also leads to higher symptom perceptions in an alleged exposure situation. Building on existing research on nocebo responses to sham electromagnetic fields, an interaction of the precautionary information with personality characteristics was hypothesised. METHODS: An experimental design with sham exposure to an electromagnetic field of a WLAN device was deployed. The final sample is constituted by N = 137 participants. Participants received either only basic information about the safety of current WLAN exposure limits or in addition also precautionary information (e.g. 'prefer wired connections if wireless technology can be relinquished'). Subsequently, symptoms and other variables were assessed before and after sham exposure to a WLAN electromagnetic field. RESULTS: Results are not in favour of the hypothesised effects. There was neither a main effect of precautionary information, nor were there any of the hypothesised interaction effects of precautionary information and personality characteristics on perceived symptoms under sham exposure. Exploratory analyses highlight the role of prior risk perception as a predictor of nocebo responses, and of symptom expectations as a mediator between these two variables. CONCLUSIONS: As the statistical power to detect even small effects was relatively high, we interpret this as a robust indication that precautionary information does not lead to increased nocebo responses by itself. The implications for health authorities´ communication with the public are discussed.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/efeitos adversos , Disseminação de Informação , Efeito Nocebo , Percepção , Adulto , Idoso , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Risco , Adulto Jovem
4.
Artigo em Inglês | MEDLINE | ID: mdl-24427881

RESUMO

The present paper is focused on the minimization of return loss of a slotted coaxial radiator proposed for a decontamination system for soils contaminated by volatile or semi-volatile organic compounds such as oils or fuels. The antenna upgrade is achieved by coating it with a 5 mm thick Teflon layer. The electromagnetic characteristics reflection coefficient and power density distribution around the antenna surrounded by soils with different moisture levels are analyzed numerically. Simplified analytical approaches are employed to accelerate the optimization of the given antenna for microwave heating systems. The improved antenna design shows a good matching of the antenna to the surrounding soil with varying moisture levels. This ensures a high efficiency of the proposed in-situ soil decontamination system.


Assuntos
Descontaminação/instrumentação , Calefação/instrumentação , Micro-Ondas , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/efeitos da radiação , Transdutores , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
5.
Artigo em Inglês | MEDLINE | ID: mdl-19227074

RESUMO

This paper presents the design and realization of a microwave applicator at 2.45 GHz for the synthesis of gold nanoparticles. The particles are dissolved in N,N-dimethylformamide (DMF). The heating rate is approximately 8 K/s to achieve a short crystallization time. For a proper applicator design it is necessary to know the dielectric properties of DMF. Therefore, the complex permittivity of DMF at 2.45 GHz is measured in a temperature range from 20 degrees C to 80 degrees C. The final applicator design is presented together with simulation results for the electric and thermal field distributions. The calculation of the temperature distribution is done with Comsol Multiphysics and considers mutual coupling between the electric and thermal field. To avoid overheating, a thermal controller is developed to control microwave power in dependency of the liquid's temperature. Finally, measurement results for matching and achieved heating rate are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...