Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 54(4): 3127-3135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673840

RESUMO

The rhizobia-Desmodium (Leguminosae, Papilionoideae) symbiosis is generally described by its specificity with alpha-rhizobia, especially with Bradyrhizobium. Our study aimed to isolate rhizobia from root nodules of native D. barbatum, D. incanum, and D. discolor, collected in remnants of the biomes of Atlantic Forest and Cerrado in protected areas of the Paraná State, southern Brazil. Based on the 16S rRNA phylogeny, 18 out of 29 isolates were classified as Alphaproteobacteria (Bradyrhizobium and Allorhizobium/Rhizobium) and 11 as Betaproteobacteria (Paraburkholderia). Phylogeny of the recA gene of the alpha-rhizobia resulted in ten main clades, of which two did not group with any described rhizobial species. In the 16S rRNA phylogeny of the beta-rhizobia, Paraburkholderia strains from the same host and conservation unity occupied the same clade. Phenotypic characterization of representative strains revealed the ability of Desmodium rhizobia to grow under stressful conditions such as high temperature, salinity, low pH conditions, and tolerance of heavy metals and xenobiotic compounds. Contrasting with previous reports, our results revealed that Brazilian native Desmodium can exploit symbiotic interactions with stress-tolerant strains of alpha- and beta-rhizobia. Stress tolerance can highly contribute to the ecological success of Desmodium in this phytogeographic region, possibly relating to its pioneering ability in Brazil. We propose Desmodium as a promising model for studies of plant-rhizobia interactions.


Assuntos
Bradyrhizobium , Burkholderiaceae , Fabaceae , Rhizobium , Rhizobium/genética , RNA Ribossômico 16S/genética , Fabaceae/microbiologia , Florestas , Burkholderiaceae/genética , Filogenia , Simbiose , Nódulos Radiculares de Plantas/microbiologia , DNA Bacteriano/genética , Análise de Sequência de DNA
2.
Arch Microbiol ; 203(9): 5533-5545, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34427725

RESUMO

Symbiotic Paraburkholderia have been increasingly studied in the past 20 years, especially when associated with Mimosa; however, studies with native/endemic species are still scarce. In this study, thirty strains were isolated from root nodules of native Mimosa paranapiacabae and M. micropteris in two locations of the Campos Gerais. The BOX-PCR fingerprinting revealed high genomic diversity, and the 16S rRNA phylogeny clustered the strains in three distinct groups (GI, GII, GIII), with one strain occupying an isolated position. Phylogenetic analysis with four concatenated housekeeping genes (atpD + gltB + gyrB + recA) confirmed the same clusters of 16S rRNA, and the closest species were P. nodosa BR 3437T and P. guartelaensis CNPSo 3008T; this last one isolated from another Mimosa species of the Campos Gerais. The phylogenies of the symbiotic genes nodAC and nifH placed all strains in a well-supported branch with the other species of the symbiovar mimosae. The phylogenetic analyses indicated that the strains represent novel lineages of sv. mimosae and that endemic Mimosa coevolved with indigenous Paraburkholderia in their natural environments.


Assuntos
Mimosa , Rhizobium , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Nódulos Radiculares de Plantas , Análise de Sequência de DNA , Simbiose
3.
Arch Microbiol ; 203(8): 4785-4803, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245357

RESUMO

Twenty years ago, the first members of the genus Burkholderia capable of nodulating and fixing N2 during symbiosis with leguminous plants were reported. The discovery that ß-proteobacteria could nodulate legumes represented a breakthrough event because, for over 100 years, it was thought that all rhizobia belonged exclusively to the α-Proteobacteria class. Over the past 20 years, efforts toward robust characterization of these bacteria with large-scale phylogenomic and taxonomic studies have led to the separation of clinically important and phytopathogenic members of Burkholderia from environmental ones, and the symbiotic nodulating species are now included in the genera Paraburkholderia and Trinickia. Paraburkholderia encompasses the vast majority of ß-rhizobia and has been mostly found in South America and South Africa, presenting greater symbiotic affinity with native members of the families Mimosoideae and Papilionoideae, respectively. Being the main center of Mimosa spp. diversity, Brazil is also known as the center of symbiotic Paraburkholderia diversity. Of the 21 symbiotic Paraburkholderia species described to date, 11 have been isolated in Brazil, and others first isolated in different countries have also been found in this country. Additionally, besides the symbiotic N2-fixation capacity of some of its members, Paraburkholderia is considered rich in other beneficial interactions with plants and can promote growth through several direct and indirect mechanisms. Therefore, these bacteria can be considered biological resources employed as environmentally friendly alternatives that could reduce the agricultural dependence on agrochemical inputs.


Assuntos
Fabaceae , Mimosa , Rhizobium , Brasil , Humanos , Fixação de Nitrogênio , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/genética , Análise de Sequência de DNA , Simbiose
5.
Syst Appl Microbiol ; 43(6): 126151, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33171385

RESUMO

Bacteria belonging to the genus Paraburkholderia are capable of establishing symbiotic relationships with plants belonging to the Fabaceae (=Leguminosae) family and fixing the atmospheric nitrogen in specialized structures in the roots called nodules, in a process known as biological nitrogen fixation (BNF). In the nodulation and BNF processes several bacterial symbiotic genes are involved, but the relations between symbiotic, core genes and host specificity are still poorly studied and understood in Paraburkholderia. In this study, eight strains of nodulating nitrogen-fixing Paraburkholderia isolated in Brazil, together with described species and other reference strains were used to infer the relatedness between core (16S rDNA, recA) and symbiotic (nod, nif, fix) genes. The diversity of genes involved in the nodulation (nodAC) and nitrogen fixation (nifH) abilities was investigated. Only two groups, one containing three Paraburkholderia species symbionts of Mimosa, and another one with P. ribeironis strains presented similar phylogenetic patterns in the analysis of core and symbiotic genes. In three other groups events of horizontal gene transfer of symbiotic genes were detected. Paraburkholderia strains with available genomes were used in the complementary analysis of nifHDK and fixABC and confirmed well-defined phylogenetic positions of symbiotic genes. In all analyses of nod, nif and fix genes the strains were distributed into five clades with high bootstrap support, allowing the proposal of five symbiovars in nodulating nitrogen-fixing Paraburkholderia, designated as mimosae, africana, tropicalis, atlantica and piptadeniae. Phylogenetic inferences within each symbiovar are discussed.


Assuntos
Burkholderiaceae/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Brasil , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Mimosa/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
6.
Arch Microbiol ; 202(6): 1369-1380, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166359

RESUMO

A polyphasic study was conducted with 11 strains trapped by Mimosa pudica and Phaseolus vulgaris grown in soils of the Brazilian Atlantic Forest. In the phylogenetic analysis of the 16S rRNA gene, one clade of strains (Psp1) showed higher similarity with Paraburkholderia piptadeniae STM7183T (99.6%), whereas the second (Psp6) was closely related to Paraburkholderia tuberum STM678T (99%). An MLSA (multilocus sequence analysis) with four (recA, gyrB, trpB and gltB) housekeeping genes placed both Psp1 and Psp6 strains in new clades, and BOX-PCR profiles indicated high intraspecific genetic diversity within each clade. Values of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) of the whole genome sequences were of 56.9 and 94.4% between the Psp1 strain CNPSo 3157T and P. piptadeniae; and of 49.7% and 92.7% between the Psp6 strain CNPSo 3155T and P. tuberum, below the threshold for species delimitation. In the nodC analysis, Psp1 strains clustered together with P. piptadeniae, while Psp6 did not group with any symbiotic Paraburkholderia. Other phenotypic, genotypic and symbiotic properties were evaluated. The polyphasic analysis supports that the strains represent two novel species, for which the names Paraburkholderia franconis sp. nov. with type strain CNPSo 3157T (= ABIP 241, = LMG 31644) and Paraburkholderia atlantica sp. nov. with type strain CNPSo 3155T (= ABIP 236, = LMG 31643) are proposed.


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Mimosa/microbiologia , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Phaseolus/microbiologia , Composição de Bases/genética , Brasil , Burkholderiaceae/genética , DNA Bacteriano/genética , Florestas , Genes Essenciais/genética , Tipagem de Sequências Multilocus , Nitrogênio , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
7.
Arch Microbiol ; 201(10): 1435-1446, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31428824

RESUMO

A polyphasic approach was used to infer the phylogenetic position of six nitrogen-fixing symbiotic bacteria isolated from Mimosa gymnas nodules grown in an ecotone between the Brazilian biomes of Atlantic Forest and Cerrado, considered as a hotspot of biodiversity. The 16S rRNA gene phylogeny indicated the highest similarity with Paraburkholderia oxyphila (98.7-98.9%), but similar values were found with other Paraburkholderia species. The multilocus sequence analysis (MLSA) of five (recA, gyrB, trpB, gltB, and atpD) housekeeping genes indicated that the CNPSo strains represent a novel lineage, sharing less than 95.7% of nucleotide identity (NI) with other Paraburkholderia species, being more closely related to P. nodosa. Genome parameters were analyzed for strain CNPSo 3008T, and DNA-DNA hybridization revealed a maximum of 55.9% of DNA-DNA relatedness with P. nodosa, while average nucleotide identity with the two closest species was of 93.84% with P. nodosa and of 87.93% with P. mimosarum, both parameters confirming that the strain represents a new species. In the analysis of the nodulation nodC gene, all CNPSo strains showed the highest similarity with P. nodosa, and nodulation tests indicated host specificity with Mimosa. Other phylogenetic, physiological, and chemotaxonomic properties were evaluated. All data obtained support the description of the novel species Paraburkholderia guartelaensis sp. nov., with CNPSo 3008T (= U13000T = G29.01T) indicated as the type strain.


Assuntos
Burkholderiaceae/classificação , Mimosa/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Composição de Bases , Brasil , Burkholderiaceae/genética , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Genes Bacterianos/genética , Tipagem de Sequências Multilocus , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
8.
Mol Biol Rep ; 46(1): 529-540, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30488371

RESUMO

Floristic surveys performed in "Campos Gerais" (Paraná, Brazil), an ecotone of Mata Atlântica and Cerrado biomes, highlights the richness and relative abundance of the family Fabaceae and point out the diversity and endemism of Mimosa spp. Our study reports the genetic diversity of rhizobia isolated from root nodules of native/endemic Mimosa gymnas Barneby in three areas of Guartelá State Park, an important conservation unit of "Campos Gerais". Soils of the sample areas were characterized as sandy, acid, poor in nutrients and organic matter. The genetic variability among the isolates was revealed by BOX-PCR genomic fingerprinting. Phylogeny based on 16S rRNA gene grouped the strains in a large cluster including Paraburkholderia nodosa and P. bannensis, while recA-gyrB phylogeny separated the strains in two groups: one including P. nodosa and the other without any described Paraburkholderia species. MLSA confirmed the separate position of this second group of strains within the genus Paraburkholderia and the nucleotide identity of the five concatened housekeeping genes was 95.9% in relation to P. nodosa BR 3437T. Phylogram based on symbiosis-essential nodC gene was in agreement with 16S rRNA analysis. Our molecular phylogenetic analysis support that Paraburkholderia are the main symbionts of native Mimosa in specific edaphic conditions found in South America and reveal the importance of endemic/native leguminous plants as reservoirs of novel rhizobial species.


Assuntos
Betaproteobacteria/genética , Mimosa/genética , Rhizobium/genética , Brasil , DNA Bacteriano/genética , Fabaceae/genética , Variação Genética/genética , Filogenia , Raízes de Plantas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...