Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-509206

RESUMO

Clinically licensed COVID-19 vaccines ameliorate viral infection by inducing vaccinee production of neutralizing antibodies that bind to the SARS-CoV-2 Spike protein to inhibit viral cellular entry (Walsh et al., 2020; Baden et al., 2021), however the clinical effectiveness of these vaccines is transitory as viral variants arise that escape antibody neutralization (Tregoning et al., 2021; Willett et al., 2022). Vaccines that solely rely upon a T cell response to combat viral infection could be transformational because they can be based on highly conserved short peptide epitopes that hold the potential for pan-variant immunity, but a mRNA-LNP T cell vaccine has not been shown to be sufficient for effective antiviral prophylaxis. Here we show that a mRNA-LNP vaccine based on highly conserved short peptide epitopes activates a CD8+ and CD4+ T cell response that prevents mortality in HLA-A*02:01 transgenic mice infected with the SARS-CoV-2 Beta variant of concern (B.1.351). In mice vaccinated with the T cell vaccine, 24% of the nucleated cells in lung were CD8+ T cells on day 7 post infection. This was 5.5 times more CD8+ T cell infiltration of the lungs in response to infection compared to the Pfizer-BioNTech Comirnaty(R) vaccine. Between days 2 and 7 post infection, the number of CD8+ T cells in the lung increased in mice vaccinated with the T cell vaccine and decreased in mice vaccinated with Comirnaty(R). The T cell vaccine did not produce neutralizing antibodies, and thus our results demonstrate that SARS-CoV-2 viral infection can be controlled by a T cell response alone. Our results suggest that further study is merited for pan-variant T cell vaccines, and that T cell vaccines may be relevant for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20159905

RESUMO

The SARS-CoV-2 Spike protein acquired a D614G mutation early in the COVID-19 pandemic that appears to confer on the virus greater infectivity and is now the globally dominant form of the virus. Certain of the current vaccines entering phase 3 trials are based on the original D614 form of Spike with the goal of eliciting protective neutralizing antibodies. To determine whether D614G mediates neutralization-escape that could compromise vaccine efficacy, sera from Spike-immunized mice, nonhuman primates and humans were evaluated for neutralization of pseudoviruses bearing either D614 or G614 Spike on their surface. In all cases, the G614 pseudovirus was moderately more susceptible to neutralization. The G614 pseudovirus also was more susceptible to neutralization by monoclonal antibodies against the receptor binding domain and by convalescent sera from people known to be infected with either the D614 or G614 form of the virus. These results indicate that a gain in infectivity provided by D614G came at the cost of making the virus more vulnerable to neutralizing antibodies, and that the mutation is not expected to be an obstacle for current vaccine development.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-055608

RESUMO

The spread of the SARS-CoV-2 into a global pandemic within a few months of onset motivates the development of a rapidly scalable vaccine. Here, we present a self-amplifying RNA encoding the SARS-CoV-2 spike protein encapsulated within a lipid nanoparticle as a vaccine and demonstrate induction of robust neutralization of a pseudo-virus, proportional to quantity of specific IgG and of higher quantities than recovered COVID-19 patients. These data provide insight into the vaccine design and evaluation of immunogenicity to enable rapid translation to the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...