Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37626956

RESUMO

Signs and symptoms involving multiple organ systems which persist for weeks or months to years after the initial SARS-CoV-2 infection (also known as PASC or long COVID) are common complications of individuals with COVID-19. We recently reported pathophysiological changes in various organs post-acute infection of mice with mouse hepatitis virus-1 (MHV-1, a coronavirus) (7 days) and after long-term post-infection (12 months). One of the organs severely affected in this animal model is the kidney, which correlated well with human studies showing kidney injury post-SARS-CoV-2 infection. Our long-term post-infection pathological observation in kidneys includes the development of edema and inflammation of the renal parenchyma, severe acute tubular necrosis, and infiltration of macrophages and lymphocytes, in addition to changes observed in both acute and long-term post-infection, which include tubular epithelial cell degenerative changes, peritubular vessel congestion, proximal and distal tubular necrosis, hemorrhage in the interstitial tissue, and vacuolation of renal tubules. These findings strongly suggest the possible development of renal fibrosis, in particular in the long-term post-infection. Accordingly, we investigated whether the signaling system that is known to initiate the above-mentioned changes in kidneys in other conditions is also activated in long-term post-MHV-1 infection. We found increased TGF-ß1, FGF23, NGAL, IL-18, HIF1-α, TLR2, YKL-40, and B2M mRNA levels in long-term post-MHV-1 infection, but not EGFR, TNFR1, BCL3, and WFDC2. However, only neutrophil gelatinase-associated lipocalin (NGAL) increased in acute infection (7 days). Immunoblot studies showed an elevation in protein levels of HIF1-α, TLR-2, and EGFR in long-term post-MHV-1 infection, while KIM-1 and MMP-7 protein levels are increased in acute infection. Treatment with a synthetic peptide, SPIKENET (SPK), which inhibits spike protein binding, reduced NGAL mRNA in acute infection, and decreased TGF-ß1, BCL3 mRNA, EGFR, HIF1-α, and TLR-2 protein levels long-term post-MHV-1 infection. These findings suggest that fibrotic events may initiate early in SARS-CoV-2 infection, leading to pronounced kidney fibrosis in long COVID. Targeting these factors therapeutically may prevent acute or long-COVID-associated kidney complications.

2.
Cell Rep ; 42(1): 112024, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36848235

RESUMO

p53 is a key tumor suppressor that is frequently mutated in human tumors. In this study, we investigated how p53 is regulated in precancerous lesions prior to mutations in the p53 gene. Analyzing esophageal cells in conditions of genotoxic stress that promotes development of esophageal adenocarcinoma, we find that p53 protein is adducted with reactive isolevuglandins (isoLGs), products of lipid peroxidation. Modification of p53 protein with isoLGs diminishes its acetylation and binding to the promoters of p53 target genes causing modulation of p53-dependent transcription. It also leads to accumulation of adducted p53 protein in intracellular amyloid-like aggregates that can be inhibited by isoLG scavenger 2-HOBA in vitro and in vivo. Taken together, our studies reveal a posttranslational modification of p53 protein that causes molecular aggregation of p53 protein and its non-mutational inactivation in conditions of DNA damage that may play an important role in human tumorigenesis.


Assuntos
Dano ao DNA , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Mutação/genética , Peroxidação de Lipídeos , Proteínas Amiloidogênicas
3.
PLoS Pathog ; 18(6): e1010628, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767594

RESUMO

Helicobacter pylori (H. pylori) is a common gastric pathogen that infects approximately half of the world's population. Infection with H. pylori can lead to diverse pathological conditions, including chronic gastritis, peptic ulcer disease, and cancer. The latter is the most severe consequence of H. pylori infection. According to epidemiological studies, gastric infection with H. pylori is the strongest known risk factor for non-cardia gastric cancer (GC), which remains one of the leading causes of cancer-related deaths worldwide. However, it still remains to be poorly understood how host-microbe interactions result in cancer development in the human stomach. Here we focus on the H. pylori bacterial factors that affect the host ubiquitin proteasome system. We investigated E3 ubiquitin ligases SIVA1 and ULF that regulate p14ARF (p19ARF in mice) tumor suppressor. ARF plays a key role in regulation of the oncogenic stress response and is frequently inhibited during GC progression. Expression of ARF, SIVA1 and ULF proteins were investigated in gastroids, H. pylori-infected mice and human gastric tissues. The role of the H. pylori type IV secretion system was assessed using various H. pylori isogenic mutants. Our studies demonstrated that H. pylori infection results in induction of ULF, decrease in SIVA1 protein levels, and subsequent ubiquitination and degradation of p14ARF tumor suppressor. Bacterial CagA protein was found to sequentially bind to SIVA1 and ULF proteins. This process is regulated by CagA protein phosphorylation at the EPIYA motifs. Downregulation of ARF protein leads to inhibition of cellular apoptosis and oncogenic stress response that may promote gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Apoptose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carcinogênese/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Camundongos , Neoplasias Gástricas/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Ubiquitinas/metabolismo
4.
Org Biomol Chem ; 12(31): 5911-21, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24986452

RESUMO

The structures of the newly synthesized 4-methyl-N'-(3-alkyl-2r,6c-diarylpiperidin-4-ylidene)-1,2,3-thiadiazole-5-carbohydrazide (5a­5l) were confirmed by spectral and elemental analysis. The difference in the potency of activity against various free radicals, human cancer cells and microbial strains has been evaluated by SAR. Compounds with electron-donating methoxy (5i and 5c) and methyl (5h and 5b) substitutions at the para position of the phenyl showed excellent free radical scavenging effects. In the tested compounds, electron withdrawing fluoro (5k and 5e), chloro (5j and 5d), and bromo (5l and 5f) substitution at the para position of the phenyl ring attached to C-2 and C-6 carbons of the piperidine moiety outperformed cytotoxic and antimicrobial activities. Our findings suggest that the antioxidant, anti-tumor and anti-microbial activities of compounds 5a­5l create promising leads for the development of potent anti-tumor and anti-microbial agents.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Hidrazinas/síntese química , Anti-Infecciosos/química , Antineoplásicos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Fungos/efeitos dos fármacos , Humanos , Hidrazinas/química , Hidrazinas/farmacologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...