Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 27(49): 495604, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834309

RESUMO

Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-x Ta x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ∼150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the [Formula: see text] and [Formula: see text] planes of α″ martensite, indicating that the films' growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a combinatorial materials library fabrication strategy offer a promising technological approach for investigating Ti-Ta thin films for a range of applications. The proposed approaches can be similarly implemented for other materials systems which can benefit from the formation of a nanocolumnar morphology.

2.
J Mech Behav Biomed Mater ; 59: 337-352, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26897095

RESUMO

Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita/química , Nanotubos de Carbono/química , Silício/química , Ligas , Adesão Celular , Proliferação de Células , Células Cultivadas , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Níquel , Propriedades de Superfície , Titânio
3.
Nanotechnology ; 21(29): 295502, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20601760

RESUMO

We report the fabrication of a double Schottky barrier (DSB) device by self-assembly of nanowires (NWs). The operating principle of the device is governed by the surface depletion effects of the NWs. High DSBs were formed at the contact interface of ZnO NWs self-assembled into bascule nanobridge (NB) structures. The bascule NB structures exhibited high sensitivity and fast response to UV illumination, having a photocurrent to dark current ratio > 10(4) and a recovery time as short as approximately 3 s. The enhanced UV photoresponse of the bascule NB structure is ascribed to the DSB, whose height is tunable with UV light, being high (approximately 0.77 eV) in dark and low under UV. The bascule NB structure provides a new type of optical switch for spectrally selective light sensing applications ranging from environmental monitoring to optical communication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...