Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 246: 115915, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081101

RESUMO

Early diagnosis and accurate assessment of tumor development facilitate early bladder cancer resection and initiation of drug therapy. This study enabled an early, accurate, label-free, noninvasive diagnosis of bladder tumors by analyzing nano-biomarkers in a single drop of urine through surface-enhanced Raman spectroscopy (SERS). In a standard N-butyl-N-4-hydroxybutyl nitrosamine-induced rat model of bladder cancer, cancer stage and polyp tumor development were monitored using a small endoscope with a diameter of 1.2 mm in a minimally invasive manner without the need to kill the rats. Samples were divided into cancer-free, early-stage, and polyp-form cancer. Training data were classified according to micro-cystoscopic 5-aminolevulinic acid fluorescence diagnosis, and specimens were postmortem verified through histopathological analysis. A drop of urine from each sample group was placed on an Au-coated zinc oxide nanoporous chip to filter nano-biomaterials and selectively enhance the Raman signals of nanoscale analytes via SERS. Principal component analysis was used to reduce the dimensionality of the collected Raman spectra, and partial least squares discriminant analysis was used to find diagnostic clusters based on the labeled samples. The combination of SERS and machine learning achieved an accuracy ≥99.6% in diagnosing both early- and polyp-stage bladder tumors. With an area under the receiver operating characteristic curve greater than 0.996, the accuracy of the diagnosis in the rat model suggests that SERS-based diagnostic methods are promising when coupled with machine learning. Low-cost, label-free, and noninvasive surface-enhanced Raman spectra are ideal for developing clinically relevant point-of-care diagnostic techniques.


Assuntos
Técnicas Biossensoriais , Neoplasias da Bexiga Urinária , Ratos , Animais , Análise Espectral Raman/métodos , Detecção Precoce de Câncer , Neoplasias da Bexiga Urinária/diagnóstico , Algoritmos
2.
Bioeng Transl Med ; 8(4): e10529, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476064

RESUMO

The direct preventative detection of flow-induced atherosclerosis remains a significant challenge, impeding the development of early treatments and prevention measures. This study proposes a method for diagnosing atherosclerosis in the carotid artery using nanometer biomarker measurements through surface-enhanced Raman spectroscopy (SERS) from single-drop blood samples. Atherosclerotic acceleration is induced in apolipoprotein E knockout mice which underwent a partial carotid ligation and were fed a high-fat diet to rapidly induce disturbed flow-induced atherosclerosis in the left common carotid artery while using the unligated, contralateral right carotid artery as control. The progressive atherosclerosis development of the left carotid artery was verified by micro-magnetic resonance imaging (micro-MRI) and histology in comparison to the right carotid artery. Single-drop blood samples are deposited on chips of gold-coated ZnO nanorods grown on silicon wafers that filter the nanometer markers and provide strong SERS signals. A diagnostic classifier was established based on principal component analysis (PCA), which separates the resultant spectra into the atherosclerotic and control groups. Scoring based on the principal components enabled the classification of samples into control, mild, and severe atherosclerotic disease. The PCA-based analysis was validated against an independent test sample and compared against the PCA-PLS-DA machine learning algorithm which is known for applicability to Raman diagnosis. The accuracy of the PCA modification-based diagnostic criteria was 94.5%, and that of the machine learning algorithm 97.5%. Using a mouse model, this study demonstrates that diagnosing and classifying the severity of atherosclerosis is possible using a single blood drop, SERS technology, and machine learning algorithm, indicating the detectability of biomarkers and vascular factors in the blood which correlate with the early stages of atherosclerosis development.

3.
Anal Chem ; 94(50): 17477-17484, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36480771

RESUMO

To diagnose renal function using a biochip capable of detecting SERS and to assess Raman measurements taken from a bilateral renal ischemia model and the feasibility of early diagnosis was done. After generating a bilateral renal ischemia rat model, blood and urine were collected. After confirming the presence of renal injury and function, liquid drops were placed onto a Raman chip whose surface had been enhanced with Au-ZnO nanorods. SERS biomarkers that diffused into the nanogaps were selectively amplified. Raman signals varied based on the severity of the renal function, and these differences were confirmed statistically. These results confirm that renal ischemia leads to renal dysfunction and that surface-enhanced Raman spectroscopy and a machine learning algorithm can be used to track signals in the urine from the release of SERS biomarkers.


Assuntos
Nefropatias , Insuficiência Renal , Ratos , Animais , Análise Espectral Raman/métodos , Ouro/química , Biomarcadores/urina , Algoritmos
4.
Microsc Microanal ; : 1-8, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35599594

RESUMO

Among intravital imaging instruments, the intravital two-photon fluorescence excitation microscope has the advantage of enabling real-time 3D fluorescence imaging deep into cells and tissues, with reduced photobleaching and photodamage compared with conventional intravital confocal microscopes. However, excessive motion of organs due to involuntary movement such as breathing may result in out-of-focus images and severe fluorescence intensity fluctuations, which hinder meaningful imaging and analysis. The clinically approved alpha-2 adrenergic receptor agonist dexmedetomidine was administered to mice during two-photon fluorescence intravital imaging to alleviate this problem. As dexmedetomidine blocks the release of the neurotransmitter norepinephrine, pain is suppressed, blood pressure is reduced, and a sedation effect is observed. By tracking the quality of focus and stability of detected fluorescence in two-photon fluorescence images of fluorescein isothiocyanate-sensitized liver vasculature in vivo, we demonstrated that intravascular dexmedetomidine can reduce fluorescence fluctuations caused by respiration on a timescale of minutes in mice, improving image quality and resolution. The results indicate that short-term dexmedetomidine treatment is suitable for reducing involuntary motion in preclinical intravital imaging studies. This method may be applicable to other animal models.

5.
IEEE Trans Med Imaging ; 41(2): 374-382, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34524956

RESUMO

Ciliary movements within the human airway are essential for maintaining a clean lung environment. Motile cilia have a characteristic ciliary beat frequency (CBF). However, CBF measurement with current video microscopic techniques can be error-prone due to the use of the single-point Fourier transformation, which is often biased for ciliary measurements. Herein, we describe a new video microscopy technique that harnesses a metric of motion-contrast imaging and image correlation for CBF analysis. It can provide objective and selective CBF measurements for individual motile cilia and generate CBF maps for the imaged area. The measurement performance of our methodology was validated with in vitro human airway organoid models that simulated an actual human airway epithelium. The CBF determined for the region of interest (ROI) was equal to that obtained with manual counting. The signal redundancy problem of conventional methods was not observed. Moreover, the obtained CBF measurements were robust to optical focal shifts, and exhibited spatial heterogeneity and temperature dependence. This technique can be used to evaluate ciliary movement in respiratory tracts and determine whether it is non-synchronous or aperiodic in patients. Therefore, our observations suggest that the proposed method can be clinically adapted as a screening tool to diagnose ciliopathies.


Assuntos
Cílios , Organoides , Humanos , Sistema Respiratório/diagnóstico por imagem
6.
Biosensors (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36671868

RESUMO

Complex clinical procedures and small-animal research procedures can benefit from dual-site imaging provided by multiple endoscopic devices. Here, an endoscopic system is proposed which enables multiple fluorescence microendoscopes to be spectrally multiplexed on a single microscope base, enabling light sources and optical relays to be shared between endoscopes. The presented system is characterized for resolution using USAF-1951 resolution test charts and for modulation transfer function using the slanted edge method. Imaging is demonstrated both directly and with microendoscopes attached. Imaging of phantoms was demonstrated by targeting USAF charts and fiber tissues dyed for FITC and Texas Red fluorescence. Afterwards, simultaneous liver and kidney imaging was demonstrated in mice expressing mitochondrial Dendra2 and injected with Texas Red-dextran. The results indicate that the system achieves high channel isolation and submicron and subcellular resolution, with resolution limited by the endoscopic probe and by physiological movement during endoscopic imaging. Multi-channel microendoscopy provides a potentially low-cost means of simultaneous multiple endoscopic imaging during biological experiments, resulting in reduced animal harm and potentially increasing insight into temporal connections between connected biological systems.


Assuntos
Endoscópios , Endoscopia , Animais , Camundongos , Desenho de Equipamento , Endoscopia/métodos , Diagnóstico por Imagem , Corantes Fluorescentes
7.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361059

RESUMO

In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility.


Assuntos
Núcleo Celular/metabolismo , Dactinomicina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Transcrição Gênica , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética
8.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208525

RESUMO

Ribonucleic acid (RNA) plays an important role in many cellular processes. Thus, visualizing and quantifying the molecular dynamics of RNA directly in living cells is essential to uncovering their role in RNA metabolism. Among the wide variety of fluorescent probes available for RNA visualization, exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes are useful because of their low fluorescence background. In this study, we apply fluorescence correlation methods to ECHO probes targeting the poly(A) tail of mRNA. In this way, we demonstrate not only the visualization but also the quantification of the interaction between the probe and the target, as well as of the change in the fluorescence brightness and the diffusion coefficient caused by the binding. In particular, the uptake of ECHO probes to detect mRNA is demonstrated in HeLa cells. These results are expected to provide new insights that help us better understand the metabolism of intracellular mRNA.


Assuntos
Corantes Fluorescentes , Hibridização de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos , Poli A , RNA Mensageiro/genética , Células HeLa , Humanos , Sensibilidade e Especificidade , Espectrometria de Fluorescência
9.
Adv Exp Med Biol ; 1310: 153-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33834437

RESUMO

Intravital microscopy has emerged as a powerful technique for the fluorescent visualization of cellular- and subcellular-level biological processes in vivo. However, the size of objective lenses used in standard microscopes currently makes it difficult to access internal organs with minimal invasiveness in small animal models, such as mice. Here we describe front- and side-view designs for small-diameter endoscopes based on gradient-index lenses, their construction, their integration into laser scanning confocal microscopy platforms, and their applications for in vivo imaging of fluorescent cells and microvasculature in various organs, including the kidney, bladder, heart, brain, and gastrointestinal tracts, with a focus on the new techniques developed for each imaging application. The combination of novel fluorescence techniques with these powerful imaging methods promises to continue providing novel insights into a variety of diseases.


Assuntos
Endoscopia , Lentes , Animais , Microscopia Intravital , Rim , Camundongos , Microscopia Confocal
10.
Materials (Basel) ; 14(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374548

RESUMO

Controlling the uptake of nanoparticles into cells so as to balance therapeutic effects with toxicity is an essential unsolved problem in the development of nanomedicine technologies. From this point of view, it is useful to use standard nanoparticles to quantitatively evaluate the physical properties of the nanoparticles in solution and in cells, and to analyze the intracellular dynamic motion and distribution of these nanoparticles at a single-particle level. In this study, standard nanoparticles are developed based on a variant silica-based nanoparticle incorporating fluorescein isothiocyanate (FITC) or/and rhodamine B isothiocyanate (RITC) with a variety of accessible diameters and a matching fluorescent cobalt ferrite core-shell structure (Fe2O4/SiO2). The physical and optical properties of the nanoparticles in vitro are fully evaluated with the complementary methods of dynamic light scattering, electron microscopy, and two fluorescence correlation methods. In addition, cell uptake of dual-colored and core/shell nanoparticles via endocytosis in live HeLa cells is detected by fluorescence correlation spectroscopy and electron microscopy, indicating the suitability of the nanoparticles as standards for further studies of intracellular dynamics with multi-modal methods.

11.
Materials (Basel) ; 13(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255438

RESUMO

Uniformly parallel Au-coated ZnO nanorods have previously been shown to amplify local Raman signals, providing increased sensitivity to disease markers in the detection of inflammation and cancer. However, practical and cost-effective fabrication methods of substrates for surface-enhanced Raman spectroscopy (SERS) fail to produce highly uniform surfaces. Here, the feasibility of Raman enhancement on less-uniform substrates is assessed. ZnO nanorod structures were fabricated by hydrothermal synthesis, starting from spin-coated seed substrates. Following analysis, the nanostructures were coated with Au to create stochastically variant substrates. The non-uniformity of the fabricated Au-coated ZnO nanorod structures is confirmed morphologically by FE-SEM and structurally by X-ray diffraction, and characterized by the angular distributions of the nanorods. Monte Carlo finite element method simulations matching the measured angular distributions and separations predicted only moderate increases in the overall Raman enhancement with increasing uniformity. Highly variant substrates exhibited approximately 76% of the Raman enhancement of more uniform substrates in simulations and experiments. The findings suggest that, although highly inhomogeneous Au-coated ZnO nanorod substrates may not attain the same Raman enhancement as more uniform substrates, the relaxation of fabrication tolerances may be economically viable.

12.
Materials (Basel) ; 13(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357466

RESUMO

When imaging brain vasculature with optical coherence tomography angiography (OCTA), volumetric analysis of cortical vascular networks in OCTA datasets is frequently challenging due to the presence of artifacts, which appear as multiple-scattering tails beneath superficial large vessels in OCTA images. These tails shadow underlying small vessels, making the assessment of vascular morphology in the deep cortex difficult. In this work, we introduce an image processing technique based on mean subtraction of the depth profile that can effectively reduce these tails to better reveal small hidden vessels compared to the current tail removal approach. With the improved vascular image quality, we demonstrate that this simple method can provide better visualization of three-dimensional vascular network topology for quantitative cerebrovascular studies.

13.
J Biophotonics ; 13(5): e201960188, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017450

RESUMO

Stereotaxic instruments are increasingly used in research animals for the study of disease, but typically require restraints and anesthetic procedures. A stereotaxic head mount that enables imaging of the anterior chamber of the eye in alert and freely mobile mice is presented in this study. The head mount is fitted based on computed tomography scans and manufactured using 3D printing. The system is placed noninvasively using temporal mount bars and a snout mount, without breaking the skin or risking suffocation, while an instrument channel stabilizes the ocular probes. With a flexible micro-endoscopic probe and a confocal scanning laser microscopy system, <20 µm resolution is achieved in vivo with a field of view of nearly 1 mm. Discomfort is minimal, and further adaptations for minimally invasive neuroscience, optogenetics and auditory studies are possible.


Assuntos
Optogenética , Vigília , Animais , Endoscopia , Camundongos , Modelos Animais , Técnicas Estereotáxicas
14.
Int J Med Sci ; 16(11): 1453-1460, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673236

RESUMO

Colorectal cancer (CRC) is one of the most frequently lethal forms of cancer. Intramucosal injection allows development of better mouse models of CRC, as orthotopic xenografts allow development of adenocarcinoma in the submucosa of the mouse colon wall. In this paper, a method of orthotopic injection is monitored longitudinally using cellular-resolution real-time in vivo fluorescence microendoscopy, following the injection of three different cell lines: 3T3-GFP to confirm immunosuppression and HCT116-RFP cells to model CRC. Adenoma formation is first observable after 7 to 10 days, and by use of 33 G needles a tumor induction rate of greater than 85% is documented. An additional experiment on the injection of rapamycin reveals drug efficacy and localization between 24 and 48 hours, and suggests the promise of real-time cellular-resolution fluorescence micro-endoscopy for developing longitudinal therapy regimes in mural models of CRC.


Assuntos
Adenocarcinoma/patologia , Adenoma/patologia , Neoplasias Colorretais/patologia , Xenoenxertos/patologia , Animais , Colo/patologia , Modelos Animais de Doenças , Células HCT116 , Humanos , Camundongos
15.
Int J Med Sci ; 16(11): 1525-1533, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673245

RESUMO

Radiotherapy, although used worldwide for the treatment of head, neck, and oral cancers, causes acute complications, including effects on vasculature and immune response due to cellular stress. Thus, the ability to diagnose side-effects and monitor vascular response in real-time during radiotherapy would be highly beneficial for clinical and research applications. In this study, recently-developed fluorescence micro-endoscopic technology provides non-invasive, high-resolution, real-time imaging at the cellular level. Moreover, with the application of high-resolution imaging technologies and micro-endoscopy, which enable improved monitoring of adverse effects in GFP-expressing mouse models, changes in the oral vasculature and lymphatic vessels are quantified in real time for 10 days following a mild localized single fractionation, 10 Gy radiotherapy treatments. Fluorescence micro-endoscopy enables quantification of the cardiovascular recovery and immune response, which shows short-term reduction in mean blood flow velocity, in lymph flow, and in transient immune infiltration even after this mild radiation dose, in addition to long-term reduction in blood vessel capacity. The data provided may serve as a reference for the expected cellular-level physiological, cardiovascular, and immune changes in animal disease models after radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Vasos Linfáticos/diagnóstico por imagem , Neoplasias Bucais/diagnóstico por imagem , Lesões por Radiação/diagnóstico por imagem , Animais , Fracionamento da Dose de Radiação , Endoscopia , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Vasos Linfáticos/patologia , Vasos Linfáticos/efeitos da radiação , Camundongos , Boca/irrigação sanguínea , Boca/diagnóstico por imagem , Boca/patologia , Boca/efeitos da radiação , Neoplasias Bucais/patologia , Neoplasias Bucais/radioterapia , Lesões por Radiação/patologia
16.
Biomed Opt Express ; 10(5): 2264-2274, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149372

RESUMO

Endoscopic imaging allows longitudinal observation of epithelial pathologies in tubular organs throughout the body. However, the imaging and optical diagnosis of tubular biostructures such as small animal models and small pediatric organs require appropriately miniaturized devices. A miniaturized catadioptric flexible side-view endoscope is proposed with omnidirectional field of view (FOV) in the transverse direction and sub-mm-scale feature resolution. The FOV in the longitudinal direction is 50°. Images are unwrapped and stitched together to form composite images of the target by two different algorithms, revealing a composite FOV of more than 3.5 cm × 360°. The endoscope is well suited for minimally invasive rapid monitoring of thin tubular organs in pediatric patients, as well as for imaging of small animal disease models at near-cellular resolution.

17.
Nanomaterials (Basel) ; 9(3)2019 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-30884889

RESUMO

Nanorods based on ZnO for surface enhanced Raman spectroscopy are promising for the non-invasive and rapid detection of biomarkers and diagnosis of disease. However, optimization of nanorod and coating parameters is essential to their practical application. With the goal of establishing a baseline for early detection in biological applications, gold-coated ZnO nanorods were grown and coated to form porous structures. Prior to gold deposition, the grown nanorods were 30⁻50 nm in diameter and 500⁻600 nm in length. Gold coatings were grown on the nanorod structure to a series of thicknesses between 100 and 300 nm. A gold coating of 200 nm was found to optimize the Rhodamine B model analyte signal, while performance for rat urine depended on the biomarkers to be detected. These results establish design guidelines for future use of Au-ZnO nanorods in the study and early diagnosis of inflammatory diseases.

18.
Theranostics ; 8(20): 5610-5624, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555567

RESUMO

Rationale: Mesenchymal stem cell (MSC) therapy may be a novel approach to improve interstitial cystitis/bladder pain syndrome (IC/BPS), an intractable disease characterized by severe pelvic pain and urinary frequency. Unfortunately, the properties of transplanted stem cells have not been directly analyzed in vivo, which hampers elucidation of the therapeutic mechanisms of these cells and optimization of transplantation protocols. Here, we monitored the behaviors of multipotent stem cells (M-MSCs) derived from human embryonic stem cells (hESCs) in real time using a novel combination of in vivo confocal endoscopic and microscopic imaging and demonstrated their improved therapeutic potency in a chronic IC/BPS animal model. Methods: Ten-week-old female Sprague-Dawley rats were instilled with 10 mg of protamine sulfate followed by 750 µg of lipopolysaccharide weekly for 5 weeks. The sham group was instilled with phosphate-buffered saline (PBS). Thereafter, the indicated dose (0.1, 0.25, 0.5, and 1×106 cells) of M-MSCs or PBS was injected once into the outer layer of the bladder. The distribution, perivascular integration, and therapeutic effects of M-MSCs were monitored by in vivo endoscopic and confocal microscopic imaging, awake cystometry, and histological and gene expression analyses. Results: A novel combination of longitudinal intravital confocal fluorescence imaging and microcystoscopy in living animals, together with immunofluorescence analysis of bladder tissues, demonstrated that transplanted M-MSCs engrafted following differentiation into multiple cell types and gradually integrated into a perivascular-like structure until 30 days after transplantation. The beneficial effects of transplanted M-MSCs on bladder voiding function and the pathological characteristics of the bladder were efficient and long-lasting due to the stable engraftment of these cells. Conclusion: This longitudinal bioimaging study of transplanted hESC-derived M-MSCs in living animals reveals their long-term functional integration, which underlies the improved therapeutic effects of these cells on IC/BPS.


Assuntos
Cistite Intersticial/diagnóstico por imagem , Cistite Intersticial/terapia , Microscopia Intravital/métodos , Células-Tronco Mesenquimais/citologia , Bexiga Urinária/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Feminino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/transplante , Ratos , Ratos Sprague-Dawley
19.
J Vasc Interv Radiol ; 29(12): 1756-1763, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266211

RESUMO

PURPOSE: To evaluate the feasibility of self-expanding metal stent (SEMS) placement and fluorescence microendoscopic monitoring for determination of fibroblast cell proliferation after stent placement in an esophageal mouse model. MATERIALS AND METHODS: Twenty fibroblast-specific protein (FSP)-1 green fluorescent protein (GFP) transgenic mice were analyzed. Ten mice (Group A) underwent SEMS placement, and fluoroscopic and fluorescence microendoscopic images were obtained biweekly until 8 weeks thereafter. Ten healthy mice (Group B) were used for control esophageal values. RESULTS: SEMS placement was technically successful in all mice. The relative average number of fibroblast GFP cells and the intensities of GFP signals in Group A were significantly higher than in Group B after stent placement. The proliferative cellular response, including granulation tissue, epithelial layer, submucosal fibrosis, and connective tissue, was increased in Group A. FSP-1-positive cells were more prominent in Group A than in Group B. CONCLUSIONS: SEMS placement was feasible and safe in an esophageal mouse model, and proliferative cellular response caused by fibroblast cell proliferation after stent placement was longitudinally monitored using a noninvasive fluorescence microendoscopic technique. The results have implications for the understanding of proliferative cellular response after stent placement in real-life patients and provide initial insights into new clinical therapeutic strategies for restenosis.


Assuntos
Proliferação de Células , Esofagoscopia/instrumentação , Esôfago/patologia , Fibroblastos/patologia , Microscopia de Fluorescência , Stents Metálicos Autoexpansíveis , Animais , Esofagoscopia/efeitos adversos , Esôfago/metabolismo , Estudos de Viabilidade , Fibroblastos/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Teste de Materiais , Camundongos Transgênicos , Desenho de Prótese , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Fatores de Tempo
20.
J Biophotonics ; 11(12): e201800206, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30079609

RESUMO

Intravital optical imaging technology is essential for minimally invasive optical diagnosis and treatment in small animal disease models. High-resolution imaging requires high-resolution optical probes, and high-resolution optical imaging systems based on highly precise and advanced technologies and therefore, associated with high-system costs. Besides, in order to acquire small animal live images, special types of animal imaging setups are indispensable. In this paper, a microendoscopic system is designed as an add-on to existing conventional imaging microscopes, reducing the price of complete confocal endomicroscopic systems. The proposed attachable system can be configured for confocal microscopes from common manufacturers and this enables users to acquire live animal cellular images from a conventional system. It features a 4f optical plane relay system, a rotary stage for side-view endoscopic probes, and an endoscopic probe mount which swings between the horizontal and the vertical. The system could be widely useful for biological studies of animal physiology and disease models.


Assuntos
Endoscopia/instrumentação , Microscopia Intravital/instrumentação , Microtecnologia/instrumentação , Animais , Colo/diagnóstico por imagem , Desenho de Equipamento , Camundongos , Pâncreas/diagnóstico por imagem , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...