Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38136248

RESUMO

Chronic oxidative stress impairs the normal functioning of the retinal pigment epithelium (RPE), leading to atrophy of this cell layer in cases of advance age-related macular degeneration (AMD). The purpose of our study was to determine if buspirone, a partial serotonin 1A (5-HT1A) receptor agonist, protected against oxidative stress-induced changes in the RPE. We exposed differentiated human ARPE-19 cells to paraquat to induce oxidative damage in culture, and utilized a mouse model with sodium iodate (NaIO3)-induced oxidative injury to evaluate the effect of buspirone. To investigate buspirone's effect on protective gene expression, we performed RT-PCR. Cellular toxicities and junctional abnormalities due to paraquat induction in ARPE-19 cells and buspirone's impact were assessed via WST-1 assays and ZO-1 immunostaining. We used spectral-domain optical coherence tomography (SD-OCT) and ZO-1 immunostaining of RPE/choroid for structural analysis. WST-1 assays showed dose-dependent protection of viability in buspirone-treated ARPE-19 cells in culture and preservation of RPE junctional integrity under oxidative stress conditions. In the NaIO3 model, daily intraperitoneal injection (i.p.) of buspirone (30 mg/kg) for 12 days improved the survival of photoreceptors compared to those of vehicle-treated eyes. ZO-1-stained RPE flat-mounts revealed the structural preservation of RPE from oxidative damage in buspirone-treated mice, as well as in buspirone-induced Nqo1, Cat, Sqstm1, Gstm1, and Sod2 genes in the RPE/choroid compared to untreated eyes. Since oxidative stress is implicated in the pathogenesis AMD, repurposing buspirone, which is currently approved for the treatment of anxiety, might be useful in treating or preventing dry AMD.

2.
Antioxidants (Basel) ; 10(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070383

RESUMO

Erythropoietin (EPO) plays an important role in erythropoiesis by its action in blocking apoptosis of progenitor cells and protects both photoreceptors and retinal ganglion cells from induced or inherited degeneration. A modified form of EPO, EPO-R76E has attenuated erythropoietic activity but is effective in inhibiting apoptosis, oxidative stress, and inflammation in several models of retinal degeneration. In this study, we used recombinant Adeno Associated Virus (AAV) to provide long-term sustained delivery of EPO-R76E and demonstrated its effects in a mouse model of dry-AMD in which retinal degeneration is induced by oxidative stress in the retinal pigment epithelial (RPE) cells. Experimental vector AAV-EPO-R76E and control vector AAV-GFP were packaged into serotype-1 (AAV1) to enable RPE selective expression. RPE oxidative stress-mediated retinal degeneration was induced by exon specific deletion of the protective enzyme MnSOD (encoded by Sod2) by cre/lox mechanism. Experimental mice received subretinal injection of AAV-EPO-R76E in the right eye and AAV-GFP in the left eye. Western blotting of RPE/choroid protein samples from AAV-EPO-R76E injected eyes showed RPE specific EPO expression. Retinal function was monitored by electroretinography (ERG). EPO-R76E over-expression in RPE delayed the retinal degeneration as measured by light microscopy in RPE specific Sod2 knockout mice. Delivery of EPO-R76E vector can be used as a tool to prevent retinal degeneration induced by RPE oxidative stress, which is implicated as a potential cause of Age-Related Macular Degeneration.

3.
Nanomaterials (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445545

RESUMO

Ocular diseases can deteriorate vision to the point of blindness and thus can have a major impact on the daily life of an individual. Conventional therapies are unable to provide absolute therapy for all ocular diseases due to the several limitations during drug delivery across the blood-retinal barrier, making it a major clinical challenge. With recent developments, the vast number of publications undergird the need for nanotechnology-based drug delivery systems in treating ocular diseases. The tool of nanotechnology provides several essential advantages, including sustained drug release and specific tissue targeting. Additionally, comprehensive in vitro and in vivo studies have suggested a better uptake of nanoparticles across ocular barriers. Nanoparticles can overcome the blood-retinal barrier and consequently increase ocular penetration and improve the bioavailability of the drug. In this review, we aim to summarize the development of organic and inorganic nanoparticles for ophthalmic applications. We highlight the potential nanoformulations in clinical trials as well as the products that have become a commercial reality.

4.
Front Bioeng Biotechnol ; 8: 573407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102456

RESUMO

Vision loss is a major complication in common ocular infections and diseases such as bacterial keratitis, age-related macular degeneration (AMD) and diabetic retinopathy (DR). The prevalence of such ophthalmic diseases represents an urgent need to develop safe, effective, and long-term treatments. Current therapies are riddled with drawbacks and limitations which calls for the exploration of alternative drug delivery mechanisms. Toxicity of the inorganic metals and metal oxides used for drug delivery raise safety concerns that are alleviated with the alternate use of, a natural and organic polymer which is both biocompatible and environmentally friendly. Carbon dots (CDs) represent a great potential in novel biomedical applications due to their tunable fluorescence, biocompatibility, and ability to be conjugated with diverse therapeutic materials. There is a growing interest on the exploitation of these properties for drug delivery with enhanced bio-imaging. However, there are limited reports of CD applications for ophthalmic indications. In this review, we focus on the CD potential and the development of translational therapies for ophthalmic diseases. The current review presents better understanding of fabrication of CDs and how it may be useful in delivering anti-bacterial agents, anti-VEGF molecules as well as imaging for ophthalmic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...