Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 21(24): 8289-300, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11713266

RESUMO

snRNPs, integral components of the pre-mRNA splicing machinery, consist of seven Sm proteins which assemble in the cytoplasm as a ring structure on the snRNAs U1, U2, U4, and U5. The survival motor neuron (SMN) protein, the spinal muscular atrophy disease gene product, is crucial for snRNP core particle assembly in vivo. SMN binds preferentially and directly to the symmetrical dimethylarginine (sDMA)-modified arginine- and glycine-rich (RG-rich) domains of SmD1 and SmD3. We found that the unmodified, but not the sDMA-modified, RG domains of SmD1 and SmD3 associate with a 20S methyltransferase complex, termed the methylosome, that contains the methyltransferase JBP1 and a JBP1-interacting protein, pICln. JBP1 binds SmD1 and SmD3 via their RG domains, while pICln binds the Sm domains. JBP1 produces sDMAs in the RG domain-containing Sm proteins. We further demonstrate the existence of a 6S complex that contains pICln, SmD1, and SmD3 but not JBP1. SmD3 from the methylosome, but not that from the 6S complex, can be transferred to the SMN complex in vitro. Together with previous results, these data indicate that methylation of Sm proteins by the methylosome directs Sm proteins to the SMN complex for assembly into snRNP core particles and suggest that the methylosome can regulate snRNP assembly.


Assuntos
Arginina/análogos & derivados , Arginina/metabolismo , Proteínas de Transporte/biossíntese , Proteínas Metiltransferases/metabolismo , Western Blotting , Proteínas de Transporte/química , Sobrevivência Celular , Células Cultivadas , Citoplasma/metabolismo , DNA/metabolismo , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Epitopos , Glutationa Transferase/metabolismo , Humanos , Espectrometria de Massas , Metilação , Metiltransferases/metabolismo , Modelos Biológicos , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Proteína-Arginina N-Metiltransferases , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Sacarose/metabolismo , Transfecção
2.
BMC Mol Biol ; 2: 9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11570975

RESUMO

BACKGROUND: Termination of translation in eukaryotes is controlled by two interacting polypeptide chain release factors, eRFl and eRF3. eRFl recognizes nonsense codons UAA, UAG and UGA, while eRF3 stimulates polypeptide release from the ribosome in a GTP- and eRFl - dependent manner. Recent studies has shown that proteins interacting with these release factors can modulate the efficiency of nonsense codon readthrough. RESULTS: We have isolated a nonessential yeast gene, which causes suppression of nonsense mutations, being in a multicopy state. This gene encodes a protein designated Itt1p, possessing a zinc finger domain characteristic of the TRIAD proteins of higher eukaryotes. Overexpression of Itt1p decreases the efficiency of translation termination, resulting in the readthrough of all three types of nonsense codons. Itt1p interacts in vitro with both eRFl and eRF3. Overexpression of eRFl, but not of eRF3, abolishes the nonsense suppressor effect of overexpressed Itt1p. CONCLUSIONS: The data obtained demonstrate that Itt1p can modulate the efficiency of translation termination in yeast. This protein possesses a zinc finger domain characteristic of the TRIAD proteins of higher eukaryotes, and this is a first observation of such protein being involved in translation.

3.
Mol Cell ; 7(5): 1111-7, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11389857

RESUMO

The survival of motor neurons protein (SMN), the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, functions as an assembly factor for snRNPs and likely other RNPs. SMN binds the arginine- and glycine-rich (RG) domains of the snRNP proteins SmD1 and SmD3. Specific arginines in these domains are modified to dimethylarginines, a common modification of unknown function. We show that SMN binds preferentially to the dimethylarginine-modified RG domains of SmD1 and SmD3. The binding of other SMN-interacting proteins is also strongly enhanced by methylation. Thus, methylation of arginines is a novel mechanism to promote specific protein-protein interactions and appears to be key to generating high-affinity SMN substrates. It is reasonable to expect that protein hypomethylation may contribute to the severity of SMA.


Assuntos
Arginina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Sequência de Aminoácidos , Arginina/análogos & derivados , Autoantígenos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Metilação , Dados de Sequência Molecular , Atrofia Muscular Espinal/etiologia , Atrofia Muscular Espinal/genética , Ligação Proteica , Proteínas de Ligação a RNA , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Complexo SMN , Especificidade por Substrato , Proteínas Centrais de snRNP
4.
J Biol Chem ; 275(31): 23841-6, 2000 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-10816558

RESUMO

Spinal muscular atrophy is a common often lethal neurodegenerative disease resulting from deletions or mutations in the survival motor neuron gene (SMN). SMN is ubiquitously expressed in metazoan cells and plays a role in small nuclear ribonucleoprotein assembly and pre-mRNA splicing. Here we characterize the Schizosacharomyces pombe orthologue of SMN (yeast SMN (ySMN)). We report that the ySMN protein is essential for viability and localizes in both the cytoplasm and the nucleus. Like human SMN, we show that ySMN can oligomerize. Remarkably, ySMN interacts directly with human SMN and Sm proteins. The highly conserved carboxyl-terminal domain of ySMN is necessary for the evolutionarily conserved interactions of SMN and required for cell viability. We also demonstrate that the conserved amino-terminal region of ySMN is not required for SMN and Sm binding but is critical for the housekeeping function of SMN.


Assuntos
Sequência Conservada , Proteínas Fúngicas/genética , Proteínas do Tecido Nervoso/genética , Schizosaccharomyces/genética , Sequência de Aminoácidos , Compartimento Celular , Núcleo Celular/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Citoplasma/química , Evolução Molecular , Proteínas Fúngicas/metabolismo , Genes Essenciais , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA , Proteínas do Complexo SMN , Especificidade da Espécie
5.
EMBO J ; 17(19): 5805-10, 1998 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9755180

RESUMO

The SUP35 gene of Saccharomyces cerevisiae encodes the polypeptide chain release factor eRF3. This protein (also called Sup35p) is thought to be able to undergo a heritable conformational switch, similarly to mammalian prions, giving rise to the cytoplasmically inherited Psi+ determinant. A dominant mutation (PNM2 allele) in the SUP35 gene causing a Gly58-->Asp change in the Sup35p N-terminal domain eliminates Psi+. Here we observed that the mutant Sup35p can be converted to the prion-like form in vitro, but such conversion proceeds slower than that of wild-type Sup35p. The overexpression of mutant Sup35p induced the de novo appearance of Psi+ cells containing the prion-like form of mutant Sup35p, which was able to transmit its properties to wild-type Sup35p both in vitro and in vivo. Our data indicate that this Psi+-eliminating mutation does not alter the initial binding of Sup35p molecules to the Sup35p Psi+-specific aggregates, but rather inhibits its subsequent prion-like rearrangement and/or binding of the next Sup35p molecule to the growing prion-like Sup35p aggregate.


Assuntos
Proteínas Fúngicas/genética , Mutação , Príons/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cromossomos Fúngicos , Dosagem de Genes , Fatores de Terminação de Peptídeos/genética
6.
Genes Dev ; 12(11): 1665-77, 1998 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-9620853

RESUMO

The nonsense-mediated mRNA decay pathway is an example of an evolutionarily conserved surveillance pathway that rids the cell of transcripts that contain nonsense mutations. The product of the UPF1 gene is a necessary component of the putative surveillance complex that recognizes and degrades aberrant mRNAs. Recent results indicate that the Upf1p also enhances translation termination at a nonsense codon. The results presented here demonstrate that the yeast and human forms of the Upf1p interact with both eukaryotic translation termination factors eRF1 and eRF3. Consistent with Upf1p interacting with the eRFs, the Upf1p is found in the prion-like aggregates that contain eRF1 and eRF3 observed in yeast [PSI+] strains. These results suggest that interaction of the Upf1p with the peptidyl release factors may be a key event in the assembly of the putative surveillance complex that enhances translation termination, monitors whether termination has occurred prematurely, and promotes degradation of aberrant transcripts.


Assuntos
Proteínas Fúngicas/genética , Fatores de Terminação de Peptídeos/genética , Biossíntese de Proteínas , RNA Helicases , RNA Mensageiro/genética , Proteínas Fúngicas/metabolismo , Humanos , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Transativadores , Transcrição Gênica
8.
Science ; 277(5324): 381-3, 1997 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-9219697

RESUMO

The yeast cytoplasmically inherited genetic determinant [PSI+] is presumed to be a manifestation of the prion-like properties of the Sup35 protein (Sup35p). Here, cell-free conversion of Sup35p from [psi-] cells (Sup35ppsi-) to the prion-like [PSI+]-specific form (Sup35pPSI+) was observed. The conversion reaction could be repeated for several consecutive cycles, thus modeling in vitro continuous [PSI+] propagation. Size fractionation of lysates of [PSI+] cells demonstrated that the converting activity was associated solely with Sup35pPSI+ aggregates, which agrees with the nucleation model for [PSI+] propagation. Sup35pPSI+ was purified and showed high conversion activity, thus confirming the prion hypothesis for Sup35p.


Assuntos
Proteínas Fúngicas/química , Príons/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Endopeptidases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Modelos Químicos , Fatores de Terminação de Peptídeos , Fenótipo , Proteínas PrPC/química , Proteínas PrPSc/química , Biossíntese de Proteínas , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Solubilidade , Transformação Genética
9.
Mol Cell Biol ; 17(5): 2798-805, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9111351

RESUMO

The SUP45 and SUP35 genes of Saccharomyces cerevisiae encode polypeptide chain release factors eRF1 and eRF3, respectively. It has been suggested that the Sup35 protein (Sup35p) is subject to a heritable conformational switch, similar to mammalian prions, thus giving rise to the non-Mendelian [PSI+] nonsense suppressor determinant. In a [PSI+] state, Sup35p forms high-molecular-weight aggregates which may inhibit Sup35p activity, leading to the [PSI+] phenotype. Sup35p is composed of the N-terminal domain (N) required for [PSI+] maintenance, the presumably nonfunctional middle region (M), and the C-terminal domain (C) essential for translation termination. In this study, we observed that the N domain, alone or as a part of larger fragments, can form aggregates in [PSI+] cells. Two sites for Sup45p binding were found within Sup35p: one is formed by the N and M domains, and the other is located within the C domain. Similarly to Sup35p, in [PSI+] cells Sup45p was found in aggregates. The aggregation of Sup45p is caused by its binding to Sup35p and was not observed when the aggregated Sup35p fragments did not contain sites for Sup45p binding. The incorporation of Sup45p into the aggregates should inhibit its activity. The N domain of Sup35p, responsible for its aggregation in [PSI+] cells, may thus act as a repressor of another polypeptide chain release factor, Sup45p. This phenomenon represents a novel mechanism of regulation of gene expression at the posttranslational level.


Assuntos
Proteínas Fúngicas/metabolismo , Fatores de Terminação de Peptídeos , Príons/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Eletroforese em Gel de Poliacrilamida , Endopeptidases/metabolismo , Proteínas de Choque Térmico/metabolismo , Peso Molecular , Fenótipo , Saccharomyces cerevisiae
10.
Genetika ; 33(5): 610-5, 1997 May.
Artigo em Russo | MEDLINE | ID: mdl-9273317

RESUMO

The yeast Saccharomyces cerevisiae SUP35 gene that encodes the Sup35p protein homologous to the translation termination eRF3 factor of higher eukaryotes is essential to replication of the nonchromosomally inherited [psi+] determinant. The nonsense suppressor phenotype of this determinant was assumed to be dependent on a specific conformational state of the Sup35p protein; the transition to this state leads to partial inactivation of this protein. In terms of this hypothesis, the Sup35p protein can, like mammalian prions, induce its own specific conformation via protein-protein interactions in the newly synthesized Sup35p molecules; in this way, inheritance of the [psi+] phenotype is ensured in a series of cell generations. In recent years, this hypothesis has been experimentally verified. Allele substitution of the wild-type SUP35 gene by its chimeric GST-SUP35 version, which encodes the glutathione S-transferase sequence fused with the N end of Sup35p, was shown to cause elimination of the [psi+] determinant. The ability to eliminate [psi+] is a recessive trait, because fusions heterozygous for the GST-SUP35 allele did not lose this trait. Elimination of [psi+] seems to be caused by inability of the chimeric protein to bring about oligomerization. The obtained data indicate that the chimeric protein manifests attenuated terminating activity but can interact with the eRF1 translation termination factor encoded by the SUP45 gene.


Assuntos
Proteínas Fúngicas/metabolismo , Glutationa Transferase/metabolismo , Príons/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Replicação do DNA , Proteínas Fúngicas/genética , Genes Fúngicos , Genes Recessivos , Glutationa Transferase/genética , Heterozigoto , Fatores de Terminação de Peptídeos , Deleção de Sequência , Regiões Terminadoras Genéticas
11.
EMBO J ; 15(12): 3127-34, 1996 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-8670813

RESUMO

The Sup35p protein of yeast Saccharomyces cerevisiae is a homologue of the polypeptide chain release factor 3 (eRF3) of higher eukaryotes. It has been suggested that this protein may adopt a specific self-propagating conformation, similar to mammalian prions, giving rise to the [psi+] nonsense suppressor determinant, inherited in a non-Mendelian fashion. Here we present data confirming the prion-like nature of [psi+]. We show that Sup35p molecules interact with each other through their N-terminal domains in [psi+], but not [psi-] cells. This interaction is critical for [psi+] propagation, since its disruption leads to a loss of [psi+]. Similarly to mammalian prions, in [psi+] cells Sup35p forms high molecular weight aggregates, accumulating most of this protein. The aggregation inhibits Sup35p activity leading to a [psi+] nonsense-suppressor phenotype. N-terminally altered Sup35p molecules are unable to interact with the [psi+] Sup35p isoform, remain soluble and improve the translation termination in [psi+] strains, thus causing an antisuppressor phenotype. The overexpression of Hsp104p chaperone protein partially solubilizes Sup35P aggregates in the [psi+] strain, also causing an antisuppressor phenotype. We propose that Hsp104p plays a role in establishing stable [psi+] inheritance by splitting up Sup35p aggregates and thus ensuring equidistribution of the prion-like Sup35p isoform to daughter cells at cell divisions.


Assuntos
Proteínas Fúngicas/genética , Príons/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Sequência de Bases , Biopolímeros , Endopeptidases/metabolismo , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Fatores de Terminação de Peptídeos , Príons/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
12.
EMBO J ; 14(17): 4365-73, 1995 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-7556078

RESUMO

The product of the yeast SUP45 gene (Sup45p) is highly homologous to the Xenopus eukaryote release factor 1 (eRF1), which has release factor activity in vitro. We show, using the two-hybrid system, that in Saccharomyces cerevisiae Sup45p and the product of the SUP35 gene (Sup35p) interact in vivo. The ability of Sup45p C-terminally tagged with (His)6 to specifically precipitate Sup35p from a cell lysate was used to confirm this interaction in vitro. Although overexpression of either the SUP45 or SUP35 genes alone did not reduce the efficiency of codon-specific tRNA nonsense suppression, the simultaneous overexpression of both the SUP35 and SUP45 genes in nonsense suppressor tRNA-containing strains produced an antisuppressor phenotype. These data are consistent with Sup35p and Sup45p forming a complex with release factor properties. Furthermore, overexpression of either Xenopus or human eRF1 (SUP45) genes also resulted in anti-suppression only if that strain was also overexpressing the yeast SUP35 gene. Antisuppression is a characteristic phenotype associated with overexpression of both prokaryote and mitochondrial release factors. We propose that Sup45p and Sup35p interact to form a release factor complex in yeast and that Sup35p, which has GTP binding sequence motifs in its C-terminal domain, provides the GTP hydrolytic activity which is a demonstrated requirement of the eukaryote translation termination reaction.


Assuntos
Proteínas Fúngicas/metabolismo , Genes Fúngicos , Família Multigênica , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos , Príons , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Histidina , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Plasmídeos , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Supressão Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...