Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 16(7): 946-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24831836

RESUMO

BACKGROUND AND AIMS: One of the major challenges of dendritic cell (DC) vaccination is the establishment of harmonized DC production protocols. Here, we report the transfer and validation of a successfully used open DC manufacturing method into a closed system, good manufacturing practice (GMP)-compatible protocol. METHODS: All production steps (lysate generation, monocyte selection, DC culture and cryopreservation) were standardized and validated. RESULTS: Tumor lysate was characterized by histology, mechanically homogenized and avitalized. This preparation yielded a median of 58 ± 21 µg protein per milligram of tumor tissue. Avitality was determined by trypan blue staining and confirmed in an adenosine triphosphate release assay. Patient monocytes were isolated by elutriation or CD14 selection, which yielded equivalent results. DCs were subsequently differentiated in Teflon bags for an optimum of 7 days in CellGro medium supplemented with interleukin (IL)-4 and granulocyte macrophage colony stimulating factor and then matured for 48 h in tumor necrosis factor-α and IL-1ß after pulsing with tumor lysate. This protocol resulted in robust and reproducible upregulation of DC maturation markers such as cluster of differentiation (CD)80, CD83, CD86, human leukocyte antigen-DR and DC-SIGN. Functionality of these DCs was shown by directed migration toward C-C motif chemokine ligand 19/21, positive T-cell stimulatory capacity and the ability to prime antigen-specific T cells from naive CD8(+) T cells. Phenotype stability, vitality and functionality of DCs after cryopreservation, thawing and washing showed no significant loss of function. Comparison of clinical data from 146 patients having received vaccinations with plate-adherence versus GMP-grade DCs showed no inferiority of the latter. CONCLUSIONS: Our robust, validated and approved protocol for DC manufacturing forms the basis for a harmonized procedure to produce cancer vaccines, which paves the way for larger multi-center clinical trials.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células Dendríticas/imunologia , Glioma/terapia , Vacinação , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Técnicas de Cultura de Células , Células Dendríticas/patologia , Glioma/imunologia , Glioma/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Leucaférese , Monócitos
2.
J Immunol ; 192(9): 4210-20, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24663679

RESUMO

The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is able to promote the generation of tolerogenic mature dendritic cells (mDCs) with an impaired ability to activate autoreactive T cells. These cells could represent a reliable tool for the promotion or restoration of Ag-specific tolerance through vaccination strategies, for example in type 1 diabetes patients. However, successful transfer of 1,25(OH)2D3-treated mDCs (1,25D3-mDCs) depends on the capacity of 1,25(OH)2D3 to imprint a similar tolerogenic profile in cells derived from diabetes-prone donors as from diabetes-resistant donors. In this study, we examined the impact of 1,25(OH)2D3 on the function and phenotype of mDCs originating from healthy (C57BL/6) and diabetes-prone (NOD) mice. We show that 1,25(OH)2D3 is able to imprint a phenotypic tolerogenic profile on DCs derived from both mouse strains. Both NOD- and C57BL/6-derived 1,25D3-mDCs decreased the proliferation and activation of autoreactive T cells in vitro, despite strain differences in the regulation of cytokine/chemokine expression. In addition, 1,25D3-mDCs from diabetes-prone mice expanded CD25(+)Foxp3(+) regulatory T cells and induced intracellular IL-10 production by T cells in vitro. Furthermore, 1,25D3-mDCs exhibited an intact functional migratory capacity in vivo that favors homing to the liver and pancreas of adult NOD mice. More importantly, when cotransferred with activated CD4(+) T cells into NOD.SCID recipients, 1,25D3-mDCs potently dampened the proliferation of autoreactive donor T cells in the pancreatic draining lymph nodes. Altogether, these results argue for the potential of 1,25D3-mDCs to restore Ag-specific immune tolerance and arrest autoimmune disease progression in vivo.


Assuntos
Células Dendríticas/imunologia , Tolerância Imunológica/efeitos dos fármacos , Vitamina D/análogos & derivados , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/imunologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Citometria de Fluxo , Imunofluorescência , Tolerância Imunológica/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...