Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(11): 2937-2940, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262248

RESUMO

Deterministic optical manipulation of fluorescent nanodiamonds (FNDs) in fluids has emerged as an experimental challenge in multimodal biological imaging. Designing and developing nano-optical trapping strategies to serve this purpose is an important task. In this Letter, we show how chemically prepared gold nanoparticles and silver nanowires can facilitate an opto-thermoelectric force to trap individual entities of FNDs using a long working distance lens, low power-density illumination (532-nm laser, 12 µW/µm2). Our trapping configuration combines the thermoplasmonic fields generated by individual plasmonic nanoparticles and the opto-thermoelectric effect facilitated by the surfactant to realize a nano-optical trap down to a single FND that is 120 nm in diameter. We use the same trapping excitation source to capture the spectral signatures of single FNDs and track their position. By tracking the FND, we observe the differences in the dynamics of the FND around different plasmonic structures. We envisage that our drop-casting platform can be extrapolated to perform targeted, low-power trapping, manipulation, and multimodal imaging of FNDs inside biological systems such as cells.

2.
Nanoscale ; 11(9): 3799-3803, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30785147

RESUMO

We report the design and fabrication of V-shaped plasmonic meta-polymers on a glass substrate or silicon wafer using a surface functionalization approach. The efficacy of the assembly method is examined by analyzing the surface enhanced Raman scattering by an individual V-shaped antenna experimentally and using computational simulations to determine the polarization dependence of local electromagnetic field enhancement.

5.
Opt Lett ; 40(6): 1006-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768168

RESUMO

We experimentally show how a single Ag nanoparticle (NP) coupled to an Ag nanowire (NW) can convert propagating surface plasmon polaritons to directional photons. By employing dual-excitation Fourier microscopy with spatially filtered collection-optics, we show single- and dual-directional out-coupling of light from NW-NP junction for plasmons excited through glass-substrate and air-superstrate. Furthermore, we show NW-NP junction can influence the directionality of molecular-fluorescence emission, thus functioning as an optical antenna. The results discussed herein may have implications in realizing directional single-photon sources and quantum plasmon circuitry.

6.
J Phys Chem B ; 118(20): 5322-30, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24783979

RESUMO

We demonstrate the utility of the surface-enhanced Raman spectroscopy (SERS) to monitor conformational transitions in protein upon ligand binding. The changes in protein's secondary and tertiary structures were monitored using amide and aliphatic/aromatic side chain vibrations. Changes in these bands are suggestive of the stabilization of the secondary and tertiary structure of transcription activator protein C in the presence of Mg(2+) ion, whereas the spectral fingerprint remained unaltered in the case of a mutant protein, defective in Mg(2+) binding. The importance of the acidic residues in Mg(2+) binding, which triggers an overall allosteric transition in the protein, is visualized in the molecular model. The present study thus opens up avenues toward the application of SERS as a potential tool for gaining structural insights into the changes occurring during conformational transitions in proteins.


Assuntos
Magnésio/química , Análise Espectral Raman , Transativadores/química , Regulação Alostérica , Sítios de Ligação , Coloides/química , Íons/química , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Prata/química , Transativadores/genética , Transativadores/metabolismo
7.
J Chem Phys ; 136(17): 174305, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22583228

RESUMO

The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (5(12)CH(4)) and tetrakaidecahedron (5(12)6(2)CH(4)) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH(4) in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH(4) and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 5(12)CH(4) cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH(4) molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 5(12)CH(4) and 5(12)6(2)CH(4) cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH(4) molecules. The CH(4) bending modes in the 5(12)CH(4) and 5(12)6(2)CH(4) cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH(4). The low frequency librational modes which are collective motion of the water molecules and CH(4) in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.

8.
Appl Opt ; 49(36): 6872-7, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21173820

RESUMO

The Pascal triangle is a geometric representation of binomial coefficients in triangular form. We utilize this formalism to deterministically arrange silver nanocylinders of different sizes (30, 60, and 90 nm) on a triangle and numerically study their near-field optical properties. We show that near-field intensities at specific points on this triangle depend on the wavelength and angle of incidence. From the wavelength-dependent studies at various junctions of nanocylinders, we obtain maximum near-field intensity at 350 and 380 nm. By varying the angle of incidence of the TM-polarized plane wave, we find systematic variation in the near-field intensity at different junctions of the geometry. Our study will lead to insights in designing controllable electromagnetic hot spots for chip-based plasmonic devices.

9.
Phys Rev Lett ; 99(16): 167404, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995292

RESUMO

We show that single-walled carbon nanotube (SWNT) bundles emit visible fluorescence in the presence of noble metal nanoparticles and nanorods in the solid state. Conductivity measurements with metallic nanotubes, isolated from pristine SWNTs, show that they become semiconducting in the presence of the metal nanoparticles. Nanoparticle binding increases the defects in the nanotube structures which is evident in the Raman spectra. The metal-semiconductor transition removes the nonradiative decay channels of the excited states enabling visible fluorescence. Nanotube structures are imaged using this emission with resolution below the classical limits.

10.
J Phys Chem B ; 110(33): 16787-92, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16913819

RESUMO

We report for the first time the surface-enhanced Raman scattering (SERS) studies on p300, a large multidomain transcriptional coactivator protein. Vibration spectral analysis has been performed in an attempt to understand the structure of the p300 in the absence of its crystal structure. Strong Raman bands associated with amides I-III have been observed in the protein spectra. This has been confirmed by performing SERS on deuterated p300. We also observe Raman bands associated with the alpha-helix, tryptophan, phenylalanine, tyrosine, and histidine. These bands will provide an ideal tool to study the drug-protein interactions in therapeutics using SERS. We have successfully demonstrated the chloride ion effect on the SERS of p300. The Raman intensity increases in the SERS spectra upon addition of chloride ion along with appearance of new modes. We have developed a new method, namely, the "sandwich technique", which could be used to perform SERS experiments on proteins in dry conditions.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Fatores de Transcrição de p300-CBP/química , Sítios de Ligação , Cloretos/química , Vidro/química , Humanos , Modelos Moleculares , Conformação Proteica , Análise Espectral Raman , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...