Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233295

RESUMO

Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the "typical" form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.


Assuntos
Miopatias da Nemalina , Miotonia Congênita , Brasil , Humanos , Proteínas Musculares/genética , Músculo Esquelético , Mutação , Miopatias da Nemalina/genética
2.
Neurol Genet ; 6(5): e513, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33062893

RESUMO

OBJECTIVE: To analyze the modulation of the phenotype in manifesting carriers of recessive X-linked myotubular myopathy (XLMTM), searching for possible genetic modifiers. METHODS: Twelve Brazilian families with XLMTM were molecularly and clinically evaluated. In 2 families, 4 of 6 and 2 of 5 manifesting female carriers were identified. These females were studied for X chromosome inactivation. In addition, whole-exome sequencing was performed, looking for possible modifier variants. We also determined the penetrance rate among carriers of the mutations responsible for the condition. RESULTS: Mutations in the MTM1 gene were identified in all index patients from the 12 families, being 4 of them novel. In the heterozygotes, X chromosome inactivation was random in 3 of 4 informative manifesting carriers. The disease penetrance rate was estimated to be 30%, compatible with incomplete penetrance. Exome comparative analyses identified variants within a segment of 4.2 Mb on chromosome 19, containing the killer cell immunoglobulin-like receptor cluster of genes that were present in all nonmanifesting carriers and absent in all manifesting carriers. We hypothesized that these killer cell immunoglobulin-like receptor variants may modulate the phenotype, acting as a protective factor in the nonmanifesting carriers. CONCLUSIONS: Affected XLMTM female carriers have been described with a surprisingly high frequency for a recessive X-linked disease, raising the question about the pattern of inheritance or the role of modifier factors acting on the disease phenotype. We demonstrated the possible existence of genetic mechanisms and variants accountable for the clinical manifestation in these women, which can become future targets for therapies.

3.
Acta Myol ; 39(4): 274-282, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33458582

RESUMO

Central Core Disease (CCD) is an inherited neuromuscular disorder characterized by the presence of cores in muscle biopsy. CCD is caused by mutations in the RYR1 gene. This gene encodes the ryanodine receptor 1, which is an intracellular calcium release channel from the sarcoplasmic reticulum to the cytosol in response to depolarization of the plasma membrane. Mutations in this gene are also associated with susceptibility to Malignant Hyperthermia (MHS). In this study, we evaluated 20 families with clinical and histological characteristics of CCD to identify primary mutations in patients, for diagnosis and genetic counseling of the families. We identified variants in the RYR1 gene in 19/20 families. The molecular pathogenicity was confirmed in 16 of them. Most of these variants (22/23) are missense and unique in the families. Two variants were recurrent in two different families. We identified six families with biallelic mutations, five compound heterozygotes with no consanguinity, and one homozygous, with consanguineous parents, resulting in 30% of cases with possible autosomal recessive inheritance. We identified seven novel variants, four of them classified as pathogenic. In one family, we identified two mutations in exon 102, segregating in cis, suggesting an additive effect of two mutations in the same allele. This work highlights the importance of using Next-Generation Sequencing technology for the molecular diagnosis of genetic diseases when a very large gene is involved, associated to a broad distribution of the mutations along it. These data also influence the prevention through adequate genetic counseling for the families and cautions against malignant hyperthermia susceptibility.


Assuntos
Padrões de Herança/genética , Mutação/genética , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adulto , Brasil , Criança , Pré-Escolar , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino
4.
Neuromuscul Disord ; 26(3): 197-200, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26851826

RESUMO

Utrophin expression was investigated in two phenotypically discordant Duchenne muscular dystrophy half-brothers. The youngest was wheelchair-bound at age 9, while his mildly affected older brother was able to walk without difficulties at age 15. DNA analysis revealed an out-of-frame exon 2 duplication in the DMD gene, associated with muscle dystrophin protein deficiency. Utrophin localization and quantity was analyzed and compared in both sibs to verify whether this could explain the milder phenotype of the older brother. Immunofluorescence analysis showed a clear sarcolemmal labeling for utrophin in both of them, which was present in regenerating as well as in mature fibers. On western blot analysis, utrophin amount was increased 3.4 and 3.3 fold respectively, as compared to normal controls, while it was increased 1.7 to 4.0 fold in a group of DMD patients within the typical range of clinical progression. These data are in accordance with our previous observations suggesting no correlation between phenotype severity and utrophin up-regulation or sarcolemmal localization in dystrophinopathies. Finding the protective mechanisms in patients with milder course is of utmost interest to direct therapeutic targets.


Assuntos
Distrofia Muscular de Duchenne/metabolismo , Utrofina/metabolismo , Progressão da Doença , Humanos , Masculino , Músculo Esquelético/metabolismo , Fenótipo , Irmãos , Regulação para Cima
5.
Neuromolecular Med ; 14(4): 281-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22707356

RESUMO

Improvement in DNA technology is increasingly revealing unexpected/unknown mutations in healthy persons and generating anxiety due to their still unknown health consequences. We report a 44-year-old healthy father of a 10-year-old daughter with bilateral coloboma and hearing loss, but without muscle weakness, in whom a whole-genome CGH revealed a deletion of exons 38-44 in the dystrophin gene. This mutation was inherited from her asymptomatic father, who was further clinically and molecularly evaluated for prognosis and genetic counseling (GC). This deletion was never identified by us in 982 Duchenne/Becker patients. To assess whether the present case represents a rare case of non-penetrance, and aiming to obtain more information for prognosis and GC, we suggested that healthy older relatives submit their DNA for analysis, to which several complied. Mutation analysis revealed that his mother, brother, and 56-year-old maternal uncle also carry the 38-44 deletion, suggesting it an unlikely cause of muscle weakness. Genome sequencing will disclose mutations and variants whose health impact are still unknown, raising important problems in interpreting results, defining prognosis, and discussing GC. We suggest that, in addition to family history, keeping the DNA of older relatives could be very informative, in particular for those interested in having their genome sequenced.


Assuntos
Bancos de Espécimes Biológicos , Cromossomos Humanos X/genética , Coloboma/genética , DNA/genética , Distrofina/genética , Fácies , Variação Genética/genética , Perda Auditiva Bilateral/genética , Perda Auditiva Neurossensorial/genética , Deleção de Sequência , Adulto , Doenças Assintomáticas , Biópsia , Causalidade , Criança , Transtornos do Comportamento Infantil/genética , Transtornos Cognitivos/genética , Hibridização Genômica Comparativa , Distrofina/fisiologia , Éxons/genética , Feminino , Humanos , Achados Incidentais , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Linhagem
7.
Am J Med Genet ; 113(2): 200-6, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12407713

RESUMO

Craniosynostosis caused by genetic factors includes a heterogeneous group of over 100 syndromes, most with autosomal dominant inheritance. Mutations in five genes (FGFR1-, -2, -3, TWIST, and MSX2) causing craniosynostosis as the main clinical feature were described. In most of these conditions, there are also limb malformations. We report a two-generation kindred segregating microcornea, optic nerve alterations and cataract since childhood, craniosynostosis, and distal limb alterations, with a great clinical intrafamilial variability. The ophthalmological problems here described seem to be unique to this genealogy while similar feet alterations were apparently only described in two other affected siblings with acro-cranial-facial dysostosis syndrome (ADS). However, ADS has an autosomal recessive inheritance instead of the dominant pattern of the present genealogy. The candidate exons of the five genes previously mentioned were tested through sequencing analysis presenting normal results in all cases. Therefore, clinical and laboratory analyses in our patients suggest that their phenotype represents a new syndrome very likely caused by mutation in a gene different from those studied.


Assuntos
Craniossinostoses/genética , Oftalmopatias/complicações , Predisposição Genética para Doença/genética , Deformidades Congênitas dos Membros/complicações , Proteínas Nucleares , Proteínas Tirosina Quinases , Adulto , Criança , Pré-Escolar , Craniossinostoses/complicações , Craniossinostoses/patologia , DNA/química , DNA/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Éxons/genética , Saúde da Família , Proteínas de Homeodomínio , Humanos , Masculino , Mutação , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Fatores de Transcrição/genética , Proteína 1 Relacionada a Twist
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA