Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Immunol ; 13: 890298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979352

RESUMO

The composition of the intestinal microbiota plays a critical role in shaping the immune system. Modern lifestyle, the inappropriate use of antibiotics, and exposure to pollution have significantly affected the composition of commensal microorganisms. The intestinal microbiota has been shown to sustain inappropriate autoimmune responses at distant sites in animal models of disease, and may also have a role in immune-mediated central nervous system (CNS) diseases such as multiple sclerosis (MS). We studied the composition of the gut mycobiota in fecal samples from 27 persons with MS (pwMS) and in 18 healthy donors (HD), including 5 pairs of homozygous twins discordant for MS. We found a tendency towards higher fungal abundance and richness in the MS group, and we observed that MS twins showed a higher rate of food-associated strains, such as Saccharomyces cerevisiae. We then found that in pwMS, a distinct population of cells with antibacterial and antifungal activity is expanded during the remitting phase and markedly decreases during clinically and/or radiologically active disease. These cells, named MAIT (mucosal-associated invariant T cells) lymphocytes, were significantly more activated in pwMS compared to HD in response to S. cerevisiae and Candida albicans strains isolated from fecal samples. This activation was also mediated by fungal-induced IL-23 secretion by innate immune cells. Finally, immunofluorescent stainings of MS post-mortem brain tissues from persons with the secondary progressive form of the disease showed that MAIT cells cross the blood-brain barrier (BBB) and produce pro-inflammatory cytokines in the brain. These results were in agreement with the hypothesis that dysbiosis of the gut microbiota might determine the inappropriate response of a subset of pathogenic mucosal T cells and favor the development of systemic inflammatory and autoimmune diseases.


Assuntos
Microbioma Gastrointestinal , Células T Invariantes Associadas à Mucosa , Esclerose Múltipla , Animais , Encéfalo , Linfócitos T CD8-Positivos/patologia , Saccharomyces cerevisiae
2.
Microbiome ; 5(1): 32, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28283029

RESUMO

BACKGROUND: A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. RESULTS: Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. CONCLUSIONS: Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.


Assuntos
Microbiologia do Ar , Bactérias/isolamento & purificação , Clima Desértico , Poeira/análise , Microbiota , Vento , África do Norte , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Biodiversidade , Mudança Climática , Ecossistema , Aquecimento Global , Itália , Metagenômica , Consórcios Microbianos , Saúde Pública , Estações do Ano , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...