Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 88(18): 13225-13235, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37616501

RESUMO

The selective successive addition of azide (•N3) and N-oxyl radicals to alkenes is demonstrated, despite each of the two radicals being known to attack C═C bonds and the mixture of radical adducts possibly being expected. The proposed radical mechanism was supported by density functional theory calculations, electron paramagnetic resonance, and radical trapping experiments. The reaction proceeds at room temperature with the available reagents: NaN3, N-hydroxy compounds, and PhI(OAc)2 as the oxidant. The method can be applied for N-hydroxyimides, N-hydroxyamides, N-hydroxybenzotriazole, and oximes as N-oxyl radical precursors. Vinylarenes, aliphatic alkenes, and even electron-deficient methyl methacrylate were successfully functionalized.

2.
J Org Chem ; 88(9): 5760-5771, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37027491

RESUMO

Azoles and organoselenium compounds are pharmacologically important scaffolds in medicinal chemistry and natural products. We developed an efficient regioselective electrochemical aminoselenation reaction of 1,3-dienes, azoles, and diselenide derivatives to access selenium-containing allylazoles skeletons. This protocol is more economical and environmentally friendly and features a broad substrate scope; pyrazole, triazole, and tetrazolium were all tolerated under the standard conditions, which could be applied to the expedient synthesis of bioactive molecules and in the pharmaceutical industry.

3.
Org Lett ; 24(50): 9337-9341, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36516277

RESUMO

An unprecedented electrochemical three-component reaction of phenylacetylene, sulfinate, and N-(formyl)anilide was discovered. The transformation occurs in an undivided cell with a graphite anode and cathode in DMF in the presence of tetrabutylammonium iodide as an electrolyte. The addition of silver(I) oxide and catalytic amounts of iodine facilitated the reaction significantly. The transformation was also carried out under photoredox-catalyzed conditions.

4.
Org Lett ; 24(49): 8942-8947, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399327

RESUMO

Visible light-induced synthesis of enaminones from vinyl azides and aldehydes under decatungstate photocatalysis was developed. The reaction proceeds via acyl radical generation from aldehyde, followed by its addition to vinyl azide, nitrogen elimination, hydrogen atom abstraction by the intermediate iminyl radical, and tautomerization. Photochemical synthesis was efficiently conducted under both batch and flow conditions. The method can be applied to various vinyl azides and aldehydes and provides the desired products in 15-72% yields.

5.
J Org Chem ; 86(24): 18107-18116, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34878276

RESUMO

An electrochemical process of free-radical difunctionalization of vinyl arenes with N-hydroxyphthalimide resulting in vicinal dioxyphthalimides was discovered. The reaction proceeds with the use of pyridinium perchlorate and pyridine as a supporting electrolyte and a base, respectively. The present approach involves the anodic generation of stabilized phthalimide-N-oxyl (PINO) radical, which adds to the carbon-carbon double bond of vinyl arenes and recombines with the subsequently formed benzylic radical. A wide range of dioxyphthalimides were obtained in yields up to 81%.

6.
Org Biomol Chem ; 19(35): 7581-7586, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524335

RESUMO

As a rule, reactive free radicals used in organic synthesis are too labile to be isolated, whereas persistent radicals are inert and find limited synthetic application. In the present study, the unusually stable diacetyliminoxyl radical was presented as a "golden mean" between transient and stable unreactive radicals. It was successfully employed as a reagent for oxidative C-O coupling with ß-dicarbonyl compounds. Using this model radical the catalytic activity of acids, bases and transition metal ions in free-radical coupling was revealed.

7.
Org Lett ; 23(13): 5107-5112, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34124913

RESUMO

The electrochemical synthesis of fluorinated ketones from enol acetates and RfSO2Na in an undivided cell under constant current conditions was developed. The electrosynthesis proceeded via perfluoroalkyl radical generation from sodium perfluoroalkyl sulfinate followed by addition to the enol acetate and transformation of the resulting C radical to a fluorinated ketone. The method is applicable to a wide range of enol acetates and results in the desired products in yields of 20 to 85%.

8.
Beilstein J Org Chem ; 16: 1234-1276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550935

RESUMO

N-Oxyl radicals (compounds with an N-O• fragment) represent one of the richest families of stable and persistent organic radicals with applications ranging from catalysis of selective oxidation processes and mechanistic studies to production of polymers, energy storage, magnetic materials design and spectroscopic studies of biological objects. Compared to other N-oxyl radicals, oxime radicals (or iminoxyl radicals) have been underestimated for a long time as useful intermediates for organic synthesis, despite the fact that their precursors, oximes, are extremely widespread and easily available organic compounds. Furthermore, oxime radicals are structurally exceptional. In these radicals, the N-O• fragment is connected to an organic moiety by a double bond, whereas all other classes of N-oxyl radicals contain an R2N-O• fragment with two single C-N bonds. Although oxime radicals have been known since 1964, their broad synthetic potential was not recognized until the last decade, when numerous selective reactions of oxidative cyclization, functionalization, and coupling mediated by iminoxyl radicals were discovered. This review is focused on the synthetic methods based on iminoxyl radicals developed in the last ten years and also contains some selected data on previous works regarding generation, structure, stability, and spectral properties of these N-oxyl radicals. The reactions of oxime radicals are classified into intermolecular (oxidation by oxime radicals, oxidative C-O coupling) and intramolecular. The majority of works are devoted to intramolecular reactions of oxime radicals. These reactions are classified into cyclizations involving C-H bond cleavage and cyclizations involving a double C=C bond cleavage.

9.
Org Lett ; 22(5): 1818-1824, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32077294

RESUMO

Sulfonylated N-unsubstituted enamines were synthesized through a chain of chemical and electrochemical transformations via sulfonylation of vinyl azides. The disclosing of the N-unsubstituted enamines synthesis was based on a unique property of the azido group, which is its ability to eliminate the N2 molecule. Furthermore, a formal paradox is observed: a double bond reacts and a double bond is retained. Electrosynthesis proceeded in an undivided cell equipped with a graphite anode and a stainless steel cathode; NH4I was used as a supporting electrolyte.

10.
Beilstein J Org Chem ; 14: 2146-2155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202467

RESUMO

The iodo-oxyimidation of styrenes with the N-hydroxyimide/I2/hypervalent iodine oxidant system was proposed. Among the examined hypervalent iodine oxidants (PIDA, PIFA, IBX, DMP) PhI(OAc)2 proved to be the most effective; yields of iodo-oxyimides are 34-91%. A plausible reaction pathway includes the addition of an imide-N-oxyl radical to the double C=C bond and trapping of the resultant benzylic radical by iodine. It was shown that the iodine atom in the prepared iodo-oxyimides can be substituted by various nucleophiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...