Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(7): 3351-3365, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36722767

RESUMO

Photoluminescent gold nanoclusters are widely seen as a promising candidate for applications in biosensing and bioimaging. Although they have many of the required properties, such as biocompatibility and photostability, the luminescence of near infrared emitting gold nanoclusters is still relatively weak compared to the best available fluorophores. This study contributes to the ongoing debate on the possibilities and limitations of improving the performance of gold nanoclusters by combining them with plasmonic nanostructures. We focus on a detailed description of the emission enhancement and compare it with the excitation enhancement obtained in recent works. We prepared a well-defined series of gold nanoclusters attached to gold nanorods whose plasmonic band is tuned to the emission band of gold nanoclusters. In the resultant single-element hybrid nanostructure, the gold nanorods control the luminescence of gold nanoclusters in terms of its spectral position, polarization and lifetime. We identified a range of parameters which determine the mutual interaction of both particles including the inter-particle distance, plasmon-emission spectral overlap, dimension of gold nanorods and even the specific position of gold nanoclusters attached on their surface. We critically assess the practical and theoretical photoluminescence enhancements achievable using the above strategy. Although the emission enhancement was generally low, the observations and methodology presented in this study can provide a valuable insight into the plasmonic enhancement in general and into the photophysics of gold nanoclusters. We believe that our approach can be largely generalized for other relevant studies on plasmon enhanced luminescence.

2.
Nanoscale ; 14(8): 3166-3178, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35142320

RESUMO

Photoluminescent (PL) gold nanoclusters (AuNCs) show many advantages over conventional semiconductor quantum dots, however, their application potential is limited by their relatively low absorption cross-section and quantum yield. Plasmonic enhancement is a common strategy for improving the performance of weak fluorophores, yet in the case of AuNCs this method is still poorly explored. Here a robust synthetic approach to a compact plasmonic nanostructure enhancing significantly the PL of AuNCs is presented. Two gold nanostructures, AuNCs and plasmonic gold nanorods (AuNRs), are assembled in a compact core-shell nanostructure with tunable geometry and optical properties. The unprecedented degree of control over the structural parameters of the nanostructure allows to study the effects of several parameters, such as excitation wavelength, AuNC-AuNR distance, and relative loading of AuNCs per single AuNR. Consequently, a more general method to measure and evaluate enhancement independently of the absolute particle concentrations is introduced. The highest PL intensity enhancement is obtained when the excitation wavelength matches the strong longitudinal plasmonic band of the AuNRs and when the separation distance between AuNCs and AuNRs decreases to 5 nm. The results presented are relevant for the application of AuNCs in optoelectronic devices and bioimaging.

3.
Nanoscale ; 13(9): 5045-5057, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33646226

RESUMO

The great application potential of photoluminescent silicon nanocrystals, especially in biomedicine, is significantly reduced due to their limited radiative rate. One of the possible ways to overcome this limitation is enhancing the luminescence by localized plasmons of metallic nanostructures. We report an optimized fabrication of gold nanorod - silicon nanocrystal core-shell nanoparticles with the silica shell as a tunable spacer. The unprecedented structural quality and homogeneity of our hybrid nanoparticles allows for detailed analysis of their luminescence. A strong correlation between dark field scattering and luminescence spectra is shown on a single particle level, indicating a dominant role of the longitudinal plasmonic band in luminescence enhancement. The spacer thickness dependence of photoluminescence intensity enhancement is investigated using a combination of experimental measurements and numerical simulations. An optimal separation distance of 5 nm is found, yielding a 7.2× enhancement of the luminescence intensity. This result is mainly attributed to an increased quantum yield resulting from the Purcell enhanced radiative rate in the nanocrystals. The ease of fabrication, low cost, long-term stability and great emission properties of the hybrid nanoparticles make them a great candidate for bio-imaging or even targeted cancer treatment.

4.
Nat Commun ; 11(1): 3821, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732893

RESUMO

The assembly of plasmonic nanoparticles into ordered 2D- and 3D-superlattices could pave the way towards new tailored materials for plasmonic sensing, photocatalysis and manipulation of light on the nanoscale. The properties of such materials strongly depend on their geometry, and accordingly straightforward protocols to obtain precise plasmonic superlattices are highly desirable. Here, we synthesize large areas of crystalline mono-, bi- and multilayers of gold nanoparticles >20 nm with a small number of defects. The superlattices can be described as hexagonal crystals with standard deviations of the lattice parameter below 1%. The periodic arrangement within the superlattices leads to new well-defined collective plasmon-polariton modes. The general level of achieved superlattice quality will be of benefit for a broad range of applications, ranging from fundamental studies of light-matter interaction to optical metamaterials and substrates for surface-enhanced spectroscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...