Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Elife ; 122023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37073955

RESUMO

The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.


Assuntos
Dano ao DNA , Mutações Sintéticas Letais , Anáfase , Mitose , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Proteína BRCA2/genética , Humanos
5.
Drug Resist Updat ; 67: 100932, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706533

RESUMO

BRCA2 is a well-established cancer driver in several human malignancies. While the remarkable success of PARP inhibitors proved the clinical potential of targeting BRCA deficiencies, the emergence of resistance mechanisms underscores the importance of seeking novel Synthetic Lethal (SL) targets for future drug development efforts. In this work, we performed a BRCA2-centric SL screen with a collection of plant-derived compounds from South America. We identified the steroidal alkaloid Solanocapsine as a selective SL inducer, and we were able to substantially increase its potency by deriving multiple analogs. The use of two complementary chemoproteomic approaches led to the identification of the nucleotide salvage pathway enzyme deoxycytidine kinase (dCK) as Solanocapsine's target responsible for its BRCA2-linked SL induction. Additional confirmatory evidence was obtained by using the highly specific dCK inhibitor (DI-87), which induces SL in multiple BRCA2-deficient and KO contexts. Interestingly, dCK-induced SL is mechanistically different from the one induced by PARP inhibitors. dCK inhibition generates substantially lower levels of DNA damage, and cytotoxic phenotypes are associated exclusively with mitosis, thus suggesting that the fine-tuning of nucleotide supply in mitosis is critical for the survival of BRCA2-deficient cells. Moreover, by using a xenograft model of contralateral tumors, we show that dCK impairment suffices to trigger SL in-vivo. Taken together, our findings unveil dCK as a promising new target for BRCA2-deficient cancers, thus setting the ground for future therapeutic alternatives to PARP inhibitors.


Assuntos
Antineoplásicos , Desoxicitidina Quinase , Humanos , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nucleotídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína BRCA2/genética
6.
Oncogene ; 39(19): 3952-3964, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203168

RESUMO

The elimination of DNA polymerase eta (pol η) causes discontinuous DNA elongation and fork stalling in UV-irradiated cells. Such alterations in DNA replication are followed by S-phase arrest, DNA double-strand break (DSB) accumulation, and cell death. However, their molecular triggers and the relative timing of these events have not been fully elucidated. Here, we report that DSBs accumulate relatively early after UV irradiation in pol η-depleted cells. Despite the availability of repair pathways, DSBs persist and chromosome instability (CIN) is not detectable. Later on cells with pan-nuclear γH2AX and massive exposure of template single-stranded DNA (ssDNA), which indicate severe replication stress, accumulate and such events are followed by cell death. Reinforcing the causal link between the accumulation of pan-nuclear ssDNA/γH2AX signals and cell death, downregulation of RPA increased both replication stress and the cell death of pol η-deficient cells. Remarkably, DSBs, pan-nuclear ssDNA/γH2AX, S-phase arrest, and cell death are all attenuated by MRE11 nuclease knockdown. Such results suggest that unscheduled MRE11-dependent activities at replicating DNA selectively trigger cell death, but not CIN. Together these results show that pol η-depletion promotes a type of cell death that may be attractive as a therapeutic tool because of the lack of CIN.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA Polimerase Dirigida por DNA/genética , Histonas/genética , Proteína Homóloga a MRE11/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Morte Celular/genética , Instabilidade Cromossômica/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , DNA de Cadeia Simples/efeitos da radiação , Humanos , Fase S/efeitos da radiação , Raios Ultravioleta/efeitos adversos
7.
Clin Cancer Res ; 25(13): 4049-4062, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30890549

RESUMO

PURPOSE: BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds. EXPERIMENTAL DESIGN: We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts. For validation, we developed chimeric spheroids and a dual-tumor xenograft model that allowed the confirmation of SL induction with the concomitant evaluation of undesired cytotoxicity on BRCA-proficient cells. To extend our results using clinical data, we performed retrospective analysis on The Cancer Genome Atlas (TCGA) breast cancer database. RESULTS: The screening of a kinase inhibitors library revealed that Polo-like kinase 1 (PLK1) inhibition triggers strong SL induction in BRCA1-deficient cells. Mechanistically, we found no connection between the SL induced by PLK1 inhibition and PARP inhibitors. Instead, we uncovered that BRCA1 downregulation and PLK1 inhibition lead to aberrant mitotic phenotypes with altered centrosomal duplication and cytokinesis, which severely reduced the clonogenic potential of these cells. The penetrance of PLK1/BRCA1 SL interaction was validated using several isogenic and nonisogenic cellular models, chimeric spheroids, and mice xenografts. Moreover, bioinformatic analysis revealed high-PLK1 expression in BRCA1-deficient tumors, a phenotype that was consistently recapitulated by inducing BRCA1 deficiency in multiple cell lines as well as in BRCA1-mutant cells. CONCLUSIONS: We uncovered an unforeseen addiction of BRCA1-deficient cancer cells to PLK1 expression, which provides a new means to exploit the therapeutic potential of PLK1 inhibitors in clinical trials, by generating stratification schemes that consider this molecular trait in patient cohorts.


Assuntos
Proteína BRCA1/deficiência , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Mutações Sintéticas Letais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteína BRCA2/deficiência , Proteína BRCA2/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Aberrações Cromossômicas , Dano ao DNA , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
8.
Genet Mol Biol ; 43(1 suppl 1): e20190070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31930278

RESUMO

The poly (adenosine diphosphate (ADP)-ribosyl) polymerase inhibitors (PARPi) selectively kill cancer cells with BRCA1 or BRCA2 (BRCA)-mutations. It has been proposed that cell death induction after PARPi depends on unrepaired double strand breaks (DSBs) that accumulate due to the homologous recombination deficiency of BRCA-mutated cells. Such accumulation of DSBs is inferred mainly from the high levels of DNA damage markers like phosphorylated histone H2AX. Herein, we developed a model of isogenic cell lines to show that depletion of BRCA causes PARPi-triggered cell death, replication stress (phosphorylated-H2AX and 53BP1 foci), and genomic instability. However, persistent DSBs accumulation was not detected under the same experimental conditions. Hence, at least in this cellular model, the trigger for cell death in PARPi-treated BRCA-depleted samples is not the accumulation of unrepaired DSBs. Instead, cell death better correlates with a rapid and aberrant resolution of DSBs by error-prone pathways that leads to severe chromosomic aberrations. Therefore, our results suggest that in PARPi-treated BRCA-deficient cells, chromosome aberrations may dually trigger both genomic instability and cell death.

9.
Mutat Res ; 808: 83-92, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29031493

RESUMO

Biallelic mutations of FANCD2 and other components of the Fanconi Anemia (FA) pathway cause a disease characterized by bone marrow failure, cancer predisposition and a striking sensitivity to agents that induce crosslinks between the two complementary DNA strands (inter-strand crosslinks-ICL). Such genotoxins were used to characterize the contribution of the FA pathway to the genomic stability of cells, thus unravelling the biological relevance of ICL repair in the context of the disease. Notwithstanding this, whether the defect in ICL repair as the sole trigger for the multiple physiological alterations observed in FA patients is still under investigation. Remarkably, ICL-independent functions of FANCD2 and other components of the FA pathway were recently reported. FANCD2 contributes to the processing of very challenging double strand ends (DSEs: one ended Double Strand Breaks -DSBs- created during DNA replication). Other ICL-independent functions of FANCD2 include prevention of DNA breakage at stalled replication forks and facilitation of chromosome segregation at the end of M phase. The current understanding of replication-associated functions of FANCD2 and its relevance for the survival of genomically stable cells is herein discussed.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Humanos
10.
Mutat Res ; 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28966006

RESUMO

The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/ 10.1016/j.mrfmmm.2017.09.006. This duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

11.
PLoS Genet ; 12(1): e1005792, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26765540

RESUMO

Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.


Assuntos
Reparo do DNA/genética , Replicação do DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Cromátides/genética , Cromátides/efeitos da radiação , Instabilidade Cromossômica/efeitos da radiação , Cromossomos/genética , Cromossomos/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Anemia de Fanconi/patologia , Instabilidade Genômica/genética , Instabilidade Genômica/efeitos da radiação , Humanos , RNA Interferente Pequeno , Raios Ultravioleta
12.
Artigo em Inglês | MEDLINE | ID: mdl-26653979

RESUMO

We analyzed chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the methylating agent and antineoplastic/diabetogenic drug streptozotocin (STZ), to test whether it induces long-term telomere instability (by chromosome end loss and/or telomere dysfunction). Rat cells (ADIPO-P2 cell line, derived from Sprague-Dawley rat adipose cells) were treated with a single concentration of STZ (2mM). Chromosomal aberrations were analyzed 18h, 10 days, and 15 days after treatment, using PNA-FISH with a pan-telomeric probe [Cy3-(CCCTAA)3] to detect (TTAGGG)n repeats. Cytogenetic analysis revealed a higher frequency of chromosomal aberrations in STZ-exposed cultures vs. untreated cultures at each time point analyzed. The yield of induced aberrations was very similar at each time point. Induction of aberrations not involving telomere dysfunction was only observed 18h and 15 days after treatment, whereas induction of telomere dysfunction-related aberrations by STZ (mainly in the form of telomere FISH signal loss and duplications, most of them chromatid-type aberrations) was observed at each time point. Our results show that STZ induces persistent telomere instability in mammalian cells, cytogenetically manifested as telomere dysfunction-related chromosomal aberrations. Neither telomere length nor telomerase activity is related to the telomere dysfunction.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Estreptozocina/efeitos adversos , Telômero/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Linhagem Celular , Análise Citogenética , Instabilidade Genômica/efeitos dos fármacos , Humanos , Hibridização in Situ Fluorescente , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Telômero/patologia
13.
Mutat Res ; 760: 16-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24406867

RESUMO

We analyzed the chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the radiomimetic compound streptonigrin (SN) in order to determine if this antineoplastic drug induces long-term telomere instability. To this end, rat cells (ADIPO-P2 cell line, derived from adipose cells from Sprague-Dawley rat) were treated with a single concentration of SN (100ng/ml), and chromosomal aberrations were analyzed 18h and 10 and 15 days after treatment by using PNA-FISH with a pan-telomeric probe [Cy3-(CCCTAA)3] to detect (TTAGGG)n repeats. Cytogenetic analysis revealed a higher frequency of telomere dysfunction-related aberrations (additional telomeric FISH signals, extra-chromosomal telomeric FISH signals, and telomere FISH signal loss and duplications) in SN-exposed cultures vs. untreated cultures at every time points analyzed. The yield of SN-induced aberrations remained very similar at 18h, 10 days as well as 15 days after treatment. Thus, our data demonstrate that SN induces persistent telomere dysfunction in mammalian cells. Moreover, we found that the level of telomerase activity in SN-treated cells was significantly lower (up to 77%) than that of untreated control cells at each time points analyzed. This fact suggests that telomerase could be involved in SN-induced telomere dysfunction.


Assuntos
Tecido Adiposo/patologia , Antibióticos Antineoplásicos/toxicidade , Aberrações Cromossômicas/efeitos dos fármacos , Fibroblastos/patologia , Estreptonigrina/toxicidade , Telômero/patologia , Tecido Adiposo/efeitos dos fármacos , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Hibridização in Situ Fluorescente , Ratos , Ratos Sprague-Dawley , Telômero/efeitos dos fármacos
14.
Environ Mol Mutagen ; 54(2): 147-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23192999

RESUMO

The effect of the methylating compound streptozotocin (STZ) on interstitial telomeric sequences (ITSs) was investigated in Chinese hamster ovary (CHO) cells by using peptide nucleic acid-fluorescence in situ hybridization with a pantelomeric probe. Cells were exposed to increasing concentrations of STZ, and chromosomal aberrations were analyzed at the first mitosis after treatment. The frequency of chromosomal aberrations directly involving ITSs increased in STZ-treated cells by a factor of 2.6 (2 mM) and 3.6 (4 mM) when compared with the frequency of these aberrations in control cells (P < 0.05). However, no significant differences were found between control and exposed cells in the percentage of aberrations directly involving ITSs, demonstrating that these repeat regions were not preferentially involved in the chromosome damage induced by STZ. In addition, STZ did not alter telomerase activity, suggesting that this enzyme may not be involved in the induction of chromosomal aberrations by this compound.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Metilação de DNA , Mutagênicos/toxicidade , Sequências Repetitivas de Ácido Nucleico/efeitos dos fármacos , Estreptozocina/toxicidade , Telômero/efeitos dos fármacos , Animais , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico/genética , Telômero/genética
15.
Mutat Res ; 734(1-2): 5-11, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564429

RESUMO

We analyzed the chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the radiomimetic compound bleomycin (BLM) in order to determine if this antineoplastic drug induces long-term telomere instability. To this end, rat cells (ADIPO-P2 cell line, derived from adipose cells from Sprague-Dawley rat) were treated with a single concentration of BLM (2.5 µg/ml), and chromosomal aberrations were analyzed 18 h and 10 days after treatment by using PNA-FISH with a pan-telomeric probe [(TTAGGG)n repeats]. Cytogenetic analysis revealed a higher frequency of aberrations at 18 h and 10 days after treatment in BLM-exposed cultures vs. untreated cultures, although the yield of BLM-induced aberrations 10 days after treatment decreased about 25% compared with the one at 18 h after treatment. Moreover, the level of telomerase activity in BLM-treated cells compared with that of untreated control cells was significantly higher at 10 days after treatment, but did not differ at 18 h after treatment. These data indicate that in terms of unstable aberrations, the in vitro clastogenic effect of BLM on ADIPO-P2 cells persists for at least 10 days after exposure. In addition, our data demonstrate, for the first time, that BLM-induced telomere instability in mammalian cells (cytogenetically detectable as incomplete chromosome elements and telomere FISH signal loss and duplication) persists for several generations after exposure. Moreover, the appearance of telomere fusions in BLM-exposed cells 10 days after treatment suggests that this compound can induce delayed telomere instability. The increase in telomerase activity in BLM-exposed cells 10 days after treatment is accompanied by the presence of aberrations directly related to telomere dysfunction. This fact suggests that telomerase is not directly involved in BLM-induced telomere instability.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Mutagênicos/toxicidade , Telômero/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Linhagem Celular , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...